Skip to main content
Log in

VAT-1 fromTorpedo synaptic vesicles is a calcium binding protein: a study in bacterial expression systems

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Calcium binding properties were examined in VAT-1, an abundant 41-kDa membrane protein expressed in the cholinergic cynaptic vesicles ofTorpedo.

  2. 2.

    An overlay assay, using45Ca2+ as a tracer, demonstrated the ability of a recombinant VAT-1 produced from the IPTG-inducible pKK223-3 expression vector to bind calcium.

  3. 3.

    A high yield of recombinant VAT-1 was obtained from the glutathioneS-transferase (GST) expression system. The fusion product enabled VAT-1 purification via affinity chromatography. Subsequent cleavage by thrombin resulted in its separation from the GST carrier protein.

  4. 4.

    A direct Ca2+-binding study was performed with purified VAT-1 by a quick-spin column technique, in the presence of45Ca2+. Quantitative analysis revealed a 1:1 molar stoichiometry for binding of Ca2+ to VAT-1, with a dissociation constant of 130µM.

  5. 5.

    A GST-linked truncated protein consisting of 13 kDa from the VAT-1 carboxy-terminal domain was found to retain the capacity to bind Ca2+.

  6. 6.

    A data search for homologies between VAT-1 and known Ca2+-binding proetins revealed considerable similarity to members of the annexin family in a 140-amino acid region from the carboxy terminal of VAT-1, which overlaps two tandem Ca2+-binding domains of the annexin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustine, G. J. (1987). Calcium action in synaptic transmitter release.Ann. Rev. Neursci. 10633–693.

    Google Scholar 

  • Baimbridge, K. G., Celio, M. R., and Roger, J. H. (1992). Calcium binding proteins in the nervous system.Trends Neurosci. 15303–308.

    Google Scholar 

  • Blaustein, M. P., and Ector, A. C. (1976). Carrier-mediated sodium-dependent and calcium-dependent calcium efflux from pinched-off presynaptic nerve terminals (synaptosomes) in vitro.Biochim. Biophys. Acta 419295–308.

    Google Scholar 

  • Brosius, J., and Holy, J. (1984). Regulation of ribosomal RNA promoters with syntheric lac operator.Proc. Natl. Acad. Sci. USA 813696–3701.

    Google Scholar 

  • Cowan, D. M., Linial, M., and Scheller, R. H. (1990).Torpedo synaptophysin: Evolution of a synaptic vesicle protein.Mol. Brain Res. 5091–7.

    Google Scholar 

  • Geisow, M. J., Walker, J. H., Boustead, C., and Taylor, W. (1987). Annexin—new family of Ca2+ regulated phospholipid-binding proteins.Biosci. Rep. 7289–298.

    Google Scholar 

  • Guan, K. L., and Dixon, J. E. (1991). Eukaryotic proteins expressed in Escherichia coli: An improved Thrombin cleavage and purification of fusion proteins with glutathione-S transferase.Anal. Biochem. 192262–267.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680–685.

    Google Scholar 

  • Linial, M., Miller, K., and Scheller, R. H. (1989). VAT-1: An abundant membrane protein from Torpedo cholinergic synaptic vesicles.Neuron 21265–1273.

    Google Scholar 

  • Llinas, R., Sugimori, M., and Silver, R. B. (1992). Microdomains of high calcium concentration in the presynaptic terminal.Science 256677–679.

    Google Scholar 

  • Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelley, P. T., Nicoll, R. A., and Waxham, M. N. (1989). An essential role for postsynaptic calmodulin and protein kinase activity in long term potentiation.Nature (Lond.)335820–824.

    Google Scholar 

  • Maruyama, K., Mikawa, T., and Ebashi, S. (1984). Detection of calcium binding proteins by45Ca2+ autoradiography on nitrocellulose membrane after SDS gel electrophoresis.J. Biochem. (Tokyo)95511–519.

    Google Scholar 

  • Moriyama, Y., and Nelson, N. (1989). Lysosomal H+-translocating ATPase has a similar subunit structure to chromaffin granule H+-ATPase complex.Biochim. Biophys. Acta 980240–247.

    Google Scholar 

  • Nachshen, D. A. (1985). Regulation of cytosolic calcium concentrations in presynaptic nerve endings isolated from rat brain.J. Physiol. (Lond.)36387–101.

    Google Scholar 

  • Sudhof, T. C., and Jahn, R. (1991). Proteins of synaptic vesicles involved in exocytosis and membrane recycling.Neuron 6665–677.

    Google Scholar 

  • Tsien, R., and Zucker, R. S. (1986). Control of cytoplasmatic calcium with photolabile 2-nitrobenzhydrol tetracarboxylate chelators.Biophys. J. 50843–853.

    Google Scholar 

  • Trimble, W. S., Linial, M., and Scheller, R. H. (1991). Cellular and molecular biology of the presynaptic nerve terminal.Annu. Rev. Neurosci. 1493–122.

    Google Scholar 

  • Volknandt, W., Schlafer, M., Bonzelius, F., and Zummermann, H. (1990). Svp25, a synaptic vesicle membrane glycoprotein from Torpedo electric organ that binds calcium and forms a homooligomeric complex.EMBO J. 92465–2470.

    Google Scholar 

  • Yamada, W. M., and Zucker, R. S. (1992). Time course of transmitter release calculated from simulations of a calcium diffusion model.Biophys. J. 61671–682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levius, O., Linial, M. VAT-1 fromTorpedo synaptic vesicles is a calcium binding protein: a study in bacterial expression systems. Cell Mol Neurobiol 13, 483–492 (1993). https://doi.org/10.1007/BF00711457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711457

Key words

Navigation