Skip to main content
Log in

Relationship among methylation, isoprenylation, and GTP binding in 21-to 23-kDa proteins of neuroblastoma

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Dimethylsulfoxide-induced differentiated neuroblastoma express high levels of membrane 21 to 23-kDa carboxyl methylated proteins. Relationships among methylation, isoprenylation, and GTP binding in these proteins were investigated. Protein carboxyl methylation, protein isoprenylation, and [α-32P]GTP binding were determined in the electrophoretically separated proteins of cells labeled with the methylation precursor [methyl-3H]methionine or with an isoprenoid precursor [3H]mevalonate.

  2. 2.

    A broad band of GTP-binding proteins, which overlaps with the methylated 21 to 23-kDa proteins, was detected in [α-32P]GTP blot overlay assays. This band of proteins was separated in two-dimensional gels into nine methylated proteins, of which four bound GTP.

  3. 3.

    The carboxyl-methylated 21 to 23-kDa proteins incorporated [3H]mevalonate metabolites with characteristics of protein isoprenylation. The label was not removed by organic solvents or destroyed by hydroxylamine. Incorporation of radioactivity from [3H]mevalonate was enhanced when endogenous levels of mevalonate were reduced by lovastatin, an inhibitor of mevalonate synthesis. Lovastatin blocked methylation of the 21 to 23-kDa proteins as well (>70%).

  4. 4.

    Methylthioadenosine, a methylation inhibitor, inhibited methylation of these proteins (>80%) but did not affect their labeling by [3H]mevalonate. The results suggest that methylation of the 21 to 23-kDa proteins depends on, and is subsequent to, isoprenylation. The sequence of events may be similar to that known in ras proteins, i.e., carboxyl methylation of a C-terminal cysteine that is isoprenylated.

  5. 5.

    Lovastatin reduced the level of small GTP-binding proteins in the membranes and increased GTP binding in the cytosol. Methylthioadensoine blocked methylation without affecting GTP binding.

  6. 6.

    Thus, isoprenylation appears to precede methylation and to be important for membrane association, while methylation is not required for GTP binding or membrane association. The role of methylation remains to be determined but might be related to specific interactions of the small GTP-binding proteins with other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirschfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980). Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol lowering agent.Proc. Natl. Acad. Sci. 773957–3901.

    Google Scholar 

  • Ames, G. F. L., and Nikaido, K. (1976). Two-dimensional gel electrophoresis of membrane proteins.Biochemistry 15616–623.

    Google Scholar 

  • Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W., and Duntze, W. (1988). Structure of Saccharomyces cerevisiae mating hormoneα-factor. Identification of S-farnesyl cysteine as a structural component.J. Biol. Chem. 26318236–18240.

    Google Scholar 

  • Axelrod, J. (1971). Methyltransferase enzymes in the metabolism of physiologically active compounds and drugs. InHandbook of Experimental Pharmacology, Vol. 2 (B. B. Brodie and J. R. Gillette, Eds), Springer-Verlag, New York., pp. 609–620.

    Google Scholar 

  • Axelrod, J., and Daly, J. W. (1965). Pituitary gland: enzymatic formation of methanol from S-adenosyl-methionine.Science 150892–893.

    Google Scholar 

  • Backlund, J. P. S., and Aksmit, R. R. (1988). Guanine nucleotide-dependent carboxyl methylation of mammalian membrane proteins.J. Biol. Chem. 26315864–15867.

    Google Scholar 

  • Backlund, J. P. S., Simonds, W. F., and Spiegel, A. M. (1990). Carboxyl methylation and COOH-terminal processing of the brain G-proteinγ-subunit.J. Biol. Chem. 26515572–15576.

    Google Scholar 

  • Barke, A. J., Brenner, C., Najarian, R., Laybourn, P., and Merryweather, J. (1985). Structure of genes encoding precursors of the yeast peptide mating pheromone a-factor. InProtein Transport and Secretion (M. J. Gething, Ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 103–108.

    Google Scholar 

  • Barten, D. M., and O'Dea, R. F. (1989). Carboxyl methyltransferase activity in intact differentiated neuroblastoma cells: Quantitation by S-[3H] adenosyl methionine prelabeling.J. Neurochem. 531156–1165.

    Google Scholar 

  • Beck, L. A., Hosick, T. J., and Sinensky, M. (1988). Incorporation of a product of mevalonic acid metabolism into proteins of Chinese hamster ovary cell nuclei.J. Cell Biol. 1071307–1316.

    Google Scholar 

  • Casey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1989). P21 ras is modified by a farensyl isoprenoid.Proc. Natl. Acad. Sci. USA 868323–8327.

    Google Scholar 

  • Chelsky, D., Olson, J. F., and Koshland, D. E., Jr. (1987). Cell cycle-dependent methyl-esterification of lamin B.J. Biol. Chem. 2624303–4309.

    Google Scholar 

  • Clarke, S., Vogel, J. P., Deschenes, R. J., and Stock, J. (1988). Posttranslational modification of the Ha-ras oncogene protein; Evidence for a third class of protein carboxyl methyltransferases.Proc. Natl. Acad. Sci. USA 854643–4647.

    Google Scholar 

  • Deschenes, R. J., Stimmel, J. B., Clarke, S., Stock, J., and Broach, J. R. (1989). RAS2 protein of Saccharomyces cerevisiae is methyl-esterified at its carboxyl terminus.J. Biol. Chem. 26411865–11873.

    Google Scholar 

  • Fujiyama, A., and Tamanoi, F. (1990). RAS 2 protein of Saccharomyces cerevisiae undergoes removal of methionine at N terminus and removal of three amino acids at C terminus.J. Biol. Chem. 2653362–3368.

    Google Scholar 

  • Fujiyama, A., Matsumoto, K., and Tamanoi, F. (1987). A novel yeast mutant in the processing of ras proteins: Assessment of the effect of the mutation on processing steps.EMBO J. 6223–228.

    Google Scholar 

  • Fung, B. K.-K., Yamane, H. K., Ota, I. M., and Clarke, S. (1990). Theγ-subunit of brain G-proteins is methyl esterified at a C-terminal cysteine.FEBS Lett. 260313–317.

    Google Scholar 

  • Gutierrez, L., Magee, A. I., Marshall,C. J., and Hancockl, J. F. (1989). Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxyl-terminal proteolysis.EMBO J. 81093–1098.

    Google Scholar 

  • Haklai, R., and Kloog, Y. (1990a). Carboxyl methylation of 21–23 kDa membrane protiens in intact neuroblastoma cells is increased with differentiation.FEBS Lett. 259233–236.

    Google Scholar 

  • Haklai, R., and Kloog, Y. (1990b). Methylation of 21–23 kDa membrane proteins by a membrane-associated protein carboxyl methyltransferase in neuroblastoma cells. Increased methylation in differentiated cells.Biochem. Pharmacol. 401365–1372.

    Google Scholar 

  • Hancock, J. H., Magee, A. I., Childs, J. E., and Marshall, C. J. (1989). All ras proteins are polyisoprenylated but only some are palmitoylated.Cell 571167–1177.

    Google Scholar 

  • Kimhi, Y., Palfrey, C., Barak, Y., and Littauer, U. Z. (1976). Maturation of neuroblastoma cells in the presence of dimethylsulfoxide.Proc. Natl. Acad. Sci. USA 73462–466.

    Google Scholar 

  • Kita, T., Brown, M. S., and Goldstein, J. L. (1980). Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme-A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase.J. Clin. Invest. 661094–1100.

    Google Scholar 

  • Kleene, S. J., Toews, M. L., and Adler, J. (1977). Isolation of glutamic acid methyl ester from an Escherichia coli membrane protein involved in chemotaxis.J. Biol. Sci. 2523214–3218.

    Google Scholar 

  • Kloog, Y., Axelrod, J., and Spector, I. (1983). Protein carboxyl methylation increases in parallel with differentiation of neuroblastoma cells.J. Neurochem. 40522–529.

    Google Scholar 

  • Koshland, D. E., Jr. (1979). A model regulatory system: Bacterial chemotaxis.Physiol. Rev. 59811–862.

    Google Scholar 

  • Laemmlie, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (Lond.)227680–683.

    Google Scholar 

  • Lapetina, E. G., and Reep, B. R. (1987). Specific binding of [γ-32P] GTP to cytosolic and membrane-bound proteins of human platelets correlates with activation of phospholipase C.Proc. Natl. Acad. Sci. USA 842261–2265.

    Google Scholar 

  • Madaule, P., and Axel, R. (1985). A novel ras related gene family.Cell 4131–40.

    Google Scholar 

  • Maltese, W. A., and Sheridan, K. M. (1987). Isoprenylated proteins in cultured cells: subcellular distribution and changes related to altered morphology and growth arrest induced by mevalonate deprivation.J. Cell. Physiol. 133471–481.

    Google Scholar 

  • Maltese, W. A., Sheridan, K. M., Repko, E. M., and Erdman, R. A. (1990). Post-translational modification of low molecular mass GTP-binding proteins by isoprenoid.J. Biol. Chem. 2652148–2155.

    Google Scholar 

  • Meydan, N., Egozi, Y., and Kloog, Y. (1987). Enzymatic protein carboxyl methylation in rat posterior pituitary: Neurophysins in rapid-turnover pool determine methyl acceptor capacity.J. Neurochem. 48208–216.

    Google Scholar 

  • Murray, E. D., Jr., and Clarke, S. (1984). Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase. Detection of a new site of methylation at isomerized L-aspartyl residues.J. Biol. Chem. 25910722–10732.

    Google Scholar 

  • O'Dea, R. F., Viveros, O. H., and Diliberto, E. J., Jr. (1981). Protein carboxymethylation: Role in the regulation of cell function.Biochem. Pharmacol. 301163–1168.

    Google Scholar 

  • O'Farrel, P. H. (1975). High resolution two-dimensional electrophoreses of proteins.J. Biol. Chem. 2504007–4021.

    Google Scholar 

  • Ong, O. C., Ota, I. M., Clarke, S., and Fung, B. K.-K. (1989). The membrane binding domain of rod cGMP phosphodiesterase is post-translationally modified by methyl esterification at a C-terminal cysteine.Proc. Natl. Acad. Sci. USA 869238–9242.

    Google Scholar 

  • Ota, I. M., and Clarke, S. (1989). Enzymatic methylation of 23-29 kDa bovine retinal rod outer segment membrane proteins. Evidence for methylester formation ar carboxyl-terminal cysteinyl residues.J. Biol. Chem. 26412879–12884.

    Google Scholar 

  • Powers, S., Kataoka, T., Fasano, O., Goldfarb, M., Strathern, J., Broach, J., and Wigler, M. (1984). Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian RAS proteins.Cell 36607–612.

    Google Scholar 

  • Powers, S., Michaelis, S., Broek, D., Santa-Anna, A. S., Field, J., Herskowitz, I., and Wigler, M. (1986). RAM, a gene product of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor.Cell 47413–422.

    Google Scholar 

  • Sakagami, Y., Yoshida, M., Isogai, A., and Suzuki, A. (1981). Peptidal sex hormones inducing conjugation tube formation in compatible mating-type cells of Tremella mesenterica.Science 2121525–1527.

    Google Scholar 

  • Schafer, W. R., Trueblood, C. E., Yang, C.-C., Mayer, P. M., Rosenberg, S., Poulter, C. D., Kim, S. H., and Rine, J. (1990). Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein.Science 2491133–1139.

    Google Scholar 

  • Schejter, E. D., and Shilo, B.-Z. (1985). Characterization of functional domains of p21 ras by use of chimeric genes.EMBO J. 4407–412.

    Google Scholar 

  • Schmidt, R. A., Schneider, C. J., and Glomset, J. (1984). Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins.J. Biol. Chem. 25910175–10180.

    Google Scholar 

  • Sinensky, M., and Logel, J. (1985). Defective macromolecule biosynthesis and cell-cycle progression in mammalian cell starved for mevalonate.Proc. Natl. Acad. Sci. USA 82 3257–3261.

    Google Scholar 

  • Spector, I. (1981). Electrophysiology of clonal nerve cell lines. InExcitable Cells in Tissue Culture (P. G. Nelson and M. Lieberman, Eds.), Plenum, New York, pp. 257–277.

    Google Scholar 

  • Springer, M. S., Goy, M. F., and Adler, J. (1979). Protein methylation in behavioral controlmechanisms and in signal transduction.Nature 280279–284.

    Google Scholar 

  • Stephenson, R. C., and Clarke, S. (1990). Identification of a C-terminal protein carboxyl methyl transferase in rat liver membranes utilizing a synthetic farensyl cysteine-containing peptide substrate.J. Biol. Chem. 26516248–16254.

    Google Scholar 

  • Stock, J. B., and Koshland, D. E., Jr. (1981). Changing reactivity of receptor carboxyl groups during bacterial sensing.J. Biol. Chem. 25610826–10833.

    Google Scholar 

  • Taparowsky, E., Shimizu, K., Goldfarb, M., and Wigler, M. (1983). Structure and activation of the human N-ras gene.Cell 34581–586.

    Google Scholar 

  • Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide to nitrocellulose: Procedure and some applications.Proc. Natl. Acad. Sci. USA764350–4354.

    Google Scholar 

  • Van der Werf, P., and Koshland, D. E., Jr. (1977). Identification of aγ-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis.J. Biol. Chem. 2522793–2795.

    Google Scholar 

  • Wilson, K. L., and Herskowitz, I. (1987). STE 16, a new gene required for pheromone production bya cells of Saccharomyces cerevisiae.Genetics 115441–449.

    Google Scholar 

  • Wolda, S. L., and Glomset, J. A. (1988). Evidence for modification of lamin B by a product of mevalonic acid.J. Biol. Chem. 2635997–6000.

    Google Scholar 

  • Yamane, H. K., and Fung, B. K.-K. (1989). The membrane binding domain of a 23kDa G-protein is carboxyl methylated.J. Biol. Chem. 26420100–20105.

    Google Scholar 

  • Zappia, V., Zydek-Cwick, C. R., and Schlenk, F. (1969). The specificity of S-adenosylmethionine derivatives in methyltransfer reactions.J. Biol. Chem. 2444499–4509.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haklai, R., Kloog, Y. Relationship among methylation, isoprenylation, and GTP binding in 21-to 23-kDa proteins of neuroblastoma. Cell Mol Neurobiol 11, 415–433 (1991). https://doi.org/10.1007/BF00711422

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711422

Key words

Navigation