Cellular and Molecular Neurobiology

, Volume 9, Issue 3, pp 313–321 | Cite as

The human tyrosine hydroxylase gene

  • Toshiharu Nagatsu
Review

Summary

  1. 1.

    Tyrosine hydroxylase (TH) is a rate-limiting enzyme for catecholamine biosynthesis, and it is a pterin-requiring monooxygenase. Both cDNAs and genomic DNA of human TH have been cloned and the nucleotide sequence has been determined.

     
  2. 2.

    Four similar but distinct mRNAs encode human TH.

    The results of Southern blot analysis and the nucleotide sequence of the human TH genomic DAN indicate that the four types of human TH mRNA are produced through alternative splicing from a single gene.

     
  3. 3.

    The human TH gene was split into 4 exons and 13 introns. The 12-bp insertion sequence is encoded by the 3′-terminal portion of the first exon. The 81-bp insertion sequence corresponds to the second exon. Two kinds of alternative splicing are involved: the alternative use of two donor sites in the first exon and the inclusion/exclusion of the second exon.

     
  4. 4.

    The four types (type 1–4) were expressed in COS cells, and all had enzymatic activities. The type 1 enzyme had the highest homospecific activity (activity per enzyme protein), the values for the other enzymes ranging from 30 to 40%. TheKm values of the four types forl-tyrosine and 6-methyl-5,6,7,8-tetrahydropterin were similar.

     

Keywords

Catecholamine Alternative Splice Tyrosine Hydroxylase Donor Site Southern Blot Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenneman, A. R., and Kaufman, S. (1964). The role of tetrahydropteridines in the enzymatic conversion of tyrosine to 3,4-dihydroxyphenylalanine.Biochem. Biophys. Res. Commun. 17177–183.Google Scholar
  2. Campbell, D. G., Hardie, D. G., and Vulliet, P. R. (1986). Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase.J. Biol. Chem. 26110489–10492.Google Scholar
  3. Coker, G. T., III, Vinnedge, L., and O' Malley, K. L. (1988). Characterization of rat and human tyrosine hydroxylase genes: Functional expression of both promoters in neuronal and non-neuronal cell types.Biochem. Biophys. Res. Commun. 1571341–1347.Google Scholar
  4. Dahlström, A., Belmaker, R. H., and Sandler, M. (eds.) (1988).Progress in Catecholamine Research, Alan R. Liss, New York, pp. 1–613.Google Scholar
  5. Engeland, J. A., Gerhard, D. S., Pauls, D. L., Sussex, J. N., Kidd, K. K., Allen, C. R., Hostetter, A. M., and Housman, D. E. (1987). Bipolar affective disorders linked to DNA markers on chromosome 11.Nature 325783–787.Google Scholar
  6. Fujisawa, H., and Okuno, S. (1987). Tyrosine 3-monooxygenase from rat adrenals. InMethods in Enzymology (S. Kaufman, Ed.), Academic Press, New York, Vol. 142, pp. 63–71.Google Scholar
  7. Ginns, E. I., Rehari, M., Martin, B. M., Weller, M., O'Malley, K. L., La Marca, M. E., McAllister, C. G., and Paul, S. M. (1988). Expression of human tyrosine hydroxylase cDNA in invertebrate cells using a baculovirus vector.J. Biol. Chem. 2637406–7410.Google Scholar
  8. Grima, G., Lamouroux, A., Blanot, F., Faucon Biguet, N., and Mallet, J. (1985). Complete mRNA coding sequence of rat tyrosine hydroxylase.Proc. Natl. Acad. Sci. USA 82617–621.Google Scholar
  9. Grima, B., Lamouroux, A., Boni, C., Julien, J.-F., Javoy-Agrid, F., and Mallet, J. (1987). A single human gene encoding multiple tyrosine hydroxylases with different predicted functional characteristics.Nature 326707–711.Google Scholar
  10. Horellou, P., Le Bourdellès, B., Clot-Humbert, J., Guibert, B., Leviel, V., and Mallet, J. (1988). Multiple human typrsine hydroxylase enzymes, generated through alternative splicing, have different specific activities inXenopus oocytes.J. Neurochem. 51652–655.Google Scholar
  11. Kaneda, N., Kobayashi, K., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T. (1987). Isolation of a novel cDNA clone for human tyrosine hydroxylase: Alternative RNA splicing produces four kinds of mRNA from a single gene.Biochem. Biophys. Res. Comm. 146971–975.Google Scholar
  12. Kiuchi, K., Kiuchi, K., Togari, A., and Nagatsu, T. (1987). Effect of spermine on tyrosine hydroxylase activity before and after phosphorylation by cyclic AMP-dependent protein kinase.Biochem. Biophys. Res. Commun. 1481460–1467.Google Scholar
  13. Kobayashi, K., Kaneda, N., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T. (1987). Isolation of a full length cDNA clone encoding human tyrosine hydroxylase type 3.Nucleic Acids Res. 156733.Google Scholar
  14. Kobayashi, K., Kaneda, N., Ichinose, H., Kishi, F., Nakazawa, A., Kurosawa, Y., Fujita, K., and Nagatsu, T. (1988a). Structures of the human tyrosine hydroxylase gene: Alternative splicing from a single gene accounts for generation of four mRNa types.J. Biochem. 103907–912.Google Scholar
  15. Kobayashi, K., Kiuchi, K., Ishii, A., Kaneda, N., Kurosawa, Y., Fujita, K., and Nagatsu, T. (1988b). Expression of four types of human tyrosine hydroxylase in COS cells.FEBS Lett. 238431–434.Google Scholar
  16. Le Bourdellès, B., Boularand, S., Boni, C., Horellou, P. Dumas, S., Grima, B., and Mallet, J. (1988). Analysis of the 5′-region of the human tyrosine hydroxylase gene: Combinatorial patterns of exon splicing generate multiple regulated tyrosine hydroxylase isoforms.J. Neurochem. 50988–991.Google Scholar
  17. Ledley, F. D., DiLella, A. G., Kwok, S. C. M., and Woo, S. L. C. (1985). Homology between phenylalanine and tyrosine hydroxylases reveals common structural and functional domains.Biochemistry 243389–3394.Google Scholar
  18. Lewis, E. J., Harrington, C. A., and Chikaraishi, D. M. (1987). Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP.Proc. Natl. Acad. Sci. USA 843550–3554.Google Scholar
  19. Lloyd, T., and Kaufman, S. (1974). The stimulation of partially purified bovine caudate tyrosine hydroxylase by phosphatidyl-L-serine.Biochem. Biophys. Res. Common. 591262–1269.Google Scholar
  20. Matsuura, S., Sugimoto, T., Hasegawa, H., Imaizumi, S., and Ichiyama, A. (1980). Studies on biologically active pteridines. III. The absolute configuration at the C-6 chiral center of tetrahydrobiopterin cofactor and related compounds.J. Biochem. 87951–957.Google Scholar
  21. Mogi, M., Kojima, K., and Nagatsu, T. (1984). Detection of inactive or less active forms of tyrosine hydroxylase in human brain and adrenals by a sandwich enzyme immunoassay.Anal. Biochem. 138125–132.Google Scholar
  22. Mogi, M., Kojima, K., Harada, M., and Nagatsu, T. (1986). Purification and immunochemical properties of tyrosine hydroxylase in human brain.Neurochem. Int. 8423–428.Google Scholar
  23. Mogi, M., Harada, M., Kiuchi, K., Kojima, K., Kondo, T., Narabayashi, H., Rausch, D., Riederer, P., Jellinger, K., and Nagatsu, T. (1988). Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brains.J. Neural Transm. 7277–81.Google Scholar
  24. Mount, S. M. (1982). A catalogue of splice junction sequences.Nucleic Acids Res. 1459–472.Google Scholar
  25. Nagatsu, T., and Oka, K. (1987). Tyrosine 3-monooxygenase from bovine adrenal medulla. InMethods in Enzymology (S. Kaufman, Ed.), Academic Press, New York, Vol. 142, pp. 56–62.Google Scholar
  26. Nagatsu, T., Levitt, M., and Udenfriend, S. (1964). Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis.J. Biol. Chem. 2392910–2917.Google Scholar
  27. Nagatsu, T., Mizutani, K., Nagatsu, I., Matsuura, S., and Sugimoto, T. (1972). Pteridines as cofactor or inhibitor of tyrosine hydroxylase.Biochem. Pharmacol. 211945–1953.Google Scholar
  28. Okuno, S., and Fujisawa, H. (1985). A new mechanism for regulation of tyrosine 3-monooxygenase by end product and cyclic AMP-dependent protein kinase.J. Biol. Chem. 2602633–2635.Google Scholar
  29. O'Malley, K. L., Anhalt, M. J., Martin, B. M., Kelsoe, J. R., Winfield, S. L., and Ginns, E. I. (1987). Isolation and characterization of the human tyrosine hydroxylase gene: Identification of 5′ alternative splice sites responsible for multiple mRNAs.Biochemistry 266910–6914.Google Scholar
  30. Pigeon, D., Ferrara, P., Gros, F., and Thiabault, J. (1987). Rat pheochromocytoma tyrosine hydroxylase is phosphorylated on serine 40 by an associated protein kinase.J. Biol. Chem. 2626155–6158.Google Scholar
  31. Tank, A. W., and Weiner, N. (1987). Tyrosine 3-monooxygenase from rat pheochromocytoma. InMethods in Enzymology (S. Kaufman, Ed.), Academic Press, New York, Vol. 142, pp. 71–82.Google Scholar
  32. Uchida, K., Takamatsu, K., Kaneda, N., Toya, S. Tsukada, Y., Kurosawa, Y., Fujita, K., Nagatsu, T., and Kohsaka, S. (1988). Transfection of tyrosine hydroxylase cDNA into CS cells.Proc. Japan Acad. 64 ser. B290–293.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Toshiharu Nagatsu
    • 1
  1. 1.Department of BiochemistryNagoya University School of MedicineNagoyaJapan

Personalised recommendations