Skip to main content
Log in

Genetic imprinting in the mouse: Implications for gene regulation

  • Published:
Journal of Inherited Metabolic Disease

Summary

Genetic imprinting specifies a germline marking that subsequently results in the repression of one or other parental allele at some point in development. Genetic manipulations to generate maternal and paternal duplications of specific chromosome regions have been used to screen almost the entire mouse genome for evidence of imprinting. As a result, 15 imprinting effects involving 10 regions on 6 different chromosomes have been detected that range from early embryonic lethalities to various growth and developmental defects seen only after birth. Genes with important roles in development therefore appear to be involved. Diverse studies have identified four imprinted genes, all of which show monoallelic expression in some, but not necessarily all, tissues. A correlation with methylation is indicated but the pattern of methylation is not consistent for each of the genes; methylation is therefore unlikely to be the imprinting signal. Methods being used to identify further imprinted genes are summarized and some of the difficulties posed are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonarakis SE, Blouin J-L, Maher J, Avramopoulous D, Thomas G, Talbot CC (1993) Maternal uniparental disomy for human chromosome 14, due to loss of a chromosome 14 from somatic cells with t(13;14) trisomy 14.Am J Hum Genet 52: 1145–1152.

    Google Scholar 

  • Barlow DP (1993) Methylation and imprinting: From host defense to gene regulation?Science 260: 309–310.

    Google Scholar 

  • Barlow DP, Stoger R, Hermann BG, Saito K, Schweifer N (1991) The mouse insulin like growth factor type-2 receptor is imprinted and closely linked to theTme locus.Nature 349: 84–87.

    Google Scholar 

  • Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene.Nature 351: 153–155.

    Google Scholar 

  • Bartolomei MS, Webber AL, Brunkrow ME, Tilghman SM (1993) Epigenetic mechanisms underlying the imprinting of the mouse H19 gene.Genes Dev 7: 1663–1673.

    Google Scholar 

  • Beechey CV (1993) Further localisation of the distal chromsome 7 imprinting region.Mouse Genome 91: 310–311.

    Google Scholar 

  • Beechey CV, Cattanach BM (1991) Lack of evidence of imprinting effects on chromsome 14.Mouse Genome 89: 257.

    Google Scholar 

  • Beechey CV, Searle A (1992) The Oxford grid. In McKusick VA, ed.Mendelian Inheritance in Man, 10th edn. Baltimore: Johns Hopkins Press, ccxiv.

    Google Scholar 

  • Bird AP (1992) The essentials of DNA methylation.Cell 70: 5–8.

    Google Scholar 

  • Brandeis M, Kafri T, Ariel M et al (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse.EMBO J 12: 3669–3677.

    Google Scholar 

  • Brunkrow ME, Tilghman SM (1991) Ectopic expression of the H19 gene in mice causes prenatal lethality.Genes Dev 5: 1092–1101.

    Google Scholar 

  • Butler MG (1990) Prader-Willi syndrome: Current understanding of cause and diagnosis.Am J Med Genet 35: 319–332.

    Google Scholar 

  • Cattanach BM (1961) A chemically-induced variegated-type position effect in the mouse.Z Vererbungslehre 92: 215–219.

    Google Scholar 

  • Cattanach BM (1986) Parental origin effects in mice.J Embryol Exp Morphol 97: 137–150.

    Google Scholar 

  • Cattanach BM (1991a) Chromosome imprinting and its significance for mammalian development. In Davies K, Tilghman S, eds.Gene Analysis, vol. 2,Gene expression and its control. Cold Spring Harbor Laboratory Press, 41–71.

  • Cattanach BM (1991b) Lack of genetic background modification upon distal chr 2 imprinting.Mouse Genome 89: 273.

    Google Scholar 

  • Cattanach BM, Beechey CV (1990a) Chromosome imprinting phenomena in mice and indications in man. In Fredga K, Kihlman BA, Bennett MD, eds.Chromosomes Today, vol. 10. London: Unwin Human, 135–148.

    Google Scholar 

  • Cattanach BM, Beechey CV (1990b) Autosomal and X-chromosomal imprinting. In Monk M, Surani A, eds.Genomic Imprinting, Development (suppl). Cambridge: The Company of Biologists, 63–72.

    Google Scholar 

  • Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice.Nature 315: 496–498.

    Google Scholar 

  • Cattanach BM, Rasberry C (1993) Evidence of imprinting involving the distal region of chr 12.Mouse Genome 91: 851–853.

    Google Scholar 

  • Cattanach BM, Barr JA, Evans EP et al (1992) A candidate mouse model for Prader-Willi syndrome which shows an absence ofSnrpn expression.Nature Genet 2: 270–274.

    Google Scholar 

  • Cattanach BM, Burtenshaw MD, Rasberry C, Evans EP (1993) Large deletions and other gross forms of chromosome imbalance compatible with viability and fertility in the mouse.Nature Genet 3: 56–61.

    Google Scholar 

  • Chaillet JR, Vogt TF, Beier DR, Leder P (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis.Cell 66: 77–83.

    Google Scholar 

  • Clayton-Smith J, Pembrey ME (1992) Angelman syndrome.J Med Genet 29: 412–415.

    Google Scholar 

  • Davies SJ, Hughes HE (1993) Imprinting in Albright's hereditary osteodystrophy.J Med Genet 30: 101–103.

    Google Scholar 

  • DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targetting.Nature 345: 78–80.

    Google Scholar 

  • DeChiara TM, Robertson J, Efstratiadis A (1991) Parental imprinting of the mouse insulinlike growth factor II gene.Cell 64: 849–859.

    Google Scholar 

  • Eversole-Cire P, Ferguson-Smith AC, Sasaki H et al (1993) Activation of an imprintedIgf2 gene in mouse somatic cell cultures.Mol Cell Biol 13: 4928–4938.

    Google Scholar 

  • Ferguson-Smith AC, Cattanach BM, Barton SC, Beechey CV, Surani MA (1991) Embryological and molecular investigations of parental imprinting on mouse chromosome 7.Nature 351: 667–670.

    Google Scholar 

  • Ferguson-Smith A, Sasaki H, Cattanach BM, Surani MA (1993) Parental origin specific epigenetic modification of the mouse H19 gene.Nature 362: 751–755.

    Google Scholar 

  • Filson AJ, Louvi A, Efstratiadis A, Robertson EJ. Rescue of the T-associated maternal effect in mice carrying null mutations inIgf2 andIgf2r, two reciprocally imprinted genes. Development118: 731–736.

  • Fontaine B, Sanson M, Delattre O et al (1991) Parental origin of chromosome 22.Genomics 10: 280–283.

    Google Scholar 

  • Forejt J, Gregorova S (1992) Genetic analysis of genomic imprinting: animprintor-I gene controls inactivation of the paternal copy of the mouseTGme locus.Cell 70: 443–450.

    Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences.Science 224: 686–692.

    Google Scholar 

  • Hadchouel M, Farza H, Simon D, Tiollias P, Pourcel C (1987) Maternal inhibition of hepatitic B surface antigen gene expression in transgenic mice correlates withde novo methylation.Nature 329: 454–456.

    Google Scholar 

  • Hall JG (1990) Genomic imprinting: Review and relevance to human diseases.Am J Hum Genet 46: 857–873.

    Google Scholar 

  • Hayashizaki Y, Hirotsune S, Okazaki Y et al (1993) Restriction landmark genomic scanning method and its various applications.Electrophoresis 14: 251–258.

    Google Scholar 

  • Henry I, Bonati-Pellié C, Chehensse V et al (1991) Uniparental disomy in a genetic cancerpredisposing syndrome.Nature 351: 665–667.

    Google Scholar 

  • Holm VA, Cassidy SB, Butler MG et al (1993) Prader-Willi syndrome: Consensus diagnostic criteria.Pediatrics 91: 398–402.

    Google Scholar 

  • Holmquist CP (1987) Role of replication time in the control of tissue-specific gene expression.Am J Hum Genet 40: 151–173.

    Google Scholar 

  • Johnston DR (1974) Hairpin-tail: A case of post-reductional gene action in the mouse egg?Genetics 76: 795–805.

    Google Scholar 

  • Johnston DR (1975) Further observations on the hairpin-tail (T hp) mutation in the mouse.Genet Res 24: 207–213.

    Google Scholar 

  • Kitsberg D, Selig S, Bradeis M et al (1993) Allele-specific replication timing of imprinted gene regions.Nature 364: 459–463.

    Google Scholar 

  • Kalousek DK, Langlois S, Barrett I et al (1993) Uniparental disomy for chromosome 16 in humans.Am J Hum Genet 52: 8–16.

    Google Scholar 

  • Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH (1993) The insulin like growth factor type 2 receptor gene is imprinted in the mouse but not in humans.Nature Genet 5: 74–78.

    Google Scholar 

  • Knoll JHM, Nichols RD, Magenis RE, Graham JM, Lalande M, Latt SA (1989) Angelman and Prader-Willi syndrome share a common chromosome 15 deletion but differ in parental origin of the deletion.Am J Med Genet 32: 285–290.

    Google Scholar 

  • Knoll JHM, Cheng S-D, Lalande M (1993a) Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region.Am J Hum Gen 53: Abstract no. 123.

    Google Scholar 

  • Knoll JHM, Wagstaff J, Lalande M (1993b) Cytogenetic and molecular studies in Prader-Willi and Angelman syndromes — an overview.Am J Med Genet 46: 2–6.

    Google Scholar 

  • Leff SE, Brannan CI, Reed ML et al (1992) Maternal imprinting of the mouseSnrpn gene and conserved linkage homology with the human Prader-Willi syndrome region.Nature Genet 2: 259–264.

    Google Scholar 

  • Li S, Klein ES, Russo AF, Simmons DM, Rosenfeld MG (1989) Isolation of cDNA clones encoding small nuclear ribonucleoparticle-associated proteins with different tissue specificity.Proc Natl Acad Sci USA 88: 9778–9782.

    Google Scholar 

  • Lyon M, Glenister PH (1977) Factors affecting the observed number of young resulting from adjacent-2 disjunction in mice carrying a translocation.Genet Res Camb 29: 83–92.

    Google Scholar 

  • Malcolm S, Clayton-Smith J, Nichols M et al (1991) Uniparental disomy in Angelman's syndrome.Lancet 337: 694–697.

    Google Scholar 

  • McAllister G, Amara SG, Lerner MR (1988) Tissue specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N.Proc Natl Acad Sci USA 76: 5495–5500.

    Google Scholar 

  • McGowan R, Campbell R, Petersen A, Sapienza C (1989) Cellular mosaicism in the methylation and expression of hemizygous loci in the mouse.Genes Dev 3: 1669–1676.

    Google Scholar 

  • Nicholls RD (1993) Genomic imprinting and uniparental disomy in Angelman and Prader-Willi syndrome. A review.Am J Med Genet 46: 16–25.

    Google Scholar 

  • Nicholls RD, Knoll JH, Butler MG, Karam S, Lalande M (1989) Genetic imprinting suggested by maternal uniparental heterodisomy in nondeletion Prader-Willi syndrome.Nature 342: 281–285.

    Google Scholar 

  • Nicholls RD, Rinchik EM, Driscoll DJ (1992) Genomic imprinting in mammalian development: Prader-Willi and Angelman syndromes as disease models. In Surani MA, Reik W, eds.Genome Imprinting. Sem Dev Biol. 3: 139–152.

    Google Scholar 

  • Nicholls RD, Gottlieb W, Russell LB, Davda M, Horsthemke B, Rinchik M (1993) Evaluation of potential models for imprinted and nonimprinted components of human chromosome 15q11–q13 by fine-structure homology mapping in the mouse.Proc Natl Acad Sci USA 90: 2050–2054.

    Google Scholar 

  • Ogawa O, Eccles MR, Szeto J et al (1993) Relaxation of insulin-like growth factor II imprinting implicated in Wilms' tumour.Nature 362: 749–751.

    Google Scholar 

  • Ohlsson R, Nystrom A, Pfeifer-Ohlsson S et al (1993) IGF2 is parentally imprinted during embryogenesis and in the Beckwith-Wiedemann syndrome.Nature Genet 4: 94–97.

    Google Scholar 

  • Özcelik T, Leff S, Robinson W et al (1992) Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region.Nature Genet 2: 265–269.

    Google Scholar 

  • Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to α-fetoprotein under the control of the murineraf andRif genes.Proc Natl Acad Sci USA 81: 5523–5527.

    Google Scholar 

  • Pentao L, Lewis RA, Ledbetter DH, Patel PI, Lupski JR (1992) Maternal uniparental isodisomy for chromosome 14. Association with autosomal recessive rod monochromacy.Am J Hum Genet 50: 690–699.

    Google Scholar 

  • Ponder B (1988) Gene losses in human tumours.Nature 335: 400–402.

    Google Scholar 

  • Ponder B (1990) Inherited predisposition to cancer.Trends Genet 6: 213–218.

    Google Scholar 

  • Rachmilewitz J, Goshen R, Ariel I, Schneider T, de Groot N, Hochberg A (1992) Parental imprinting of the human H19 gene.FEBS Lett 309: 25–28.

    Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer.Nature 363: 747–749.

    Google Scholar 

  • Reik W (1989) Genomic imprinting and genetic disorders in man.Trends Genet 5: 331–336.

    Google Scholar 

  • Reik W, Surani MA (1989) Genomic imprinting and embryonal tumours.Nature 338: 112–113.

    Google Scholar 

  • Reik W, Collick S, Norris ML, Barton SC, Surani MAH (1987) Genomic imprinting determines methylation of parental alleles in transgenic mice.Nature 328: 248–251.

    Google Scholar 

  • Riggs AD, Pfeifer GP (1992) X-chromosome inactivation and cell memory.Trends Genet 8: 169–174.

    Google Scholar 

  • Sapienza CA, Peterson AC, Rossant J, Balling R (1987) Degree of methylation of transgenes is dependent on gamete of origin.Nature 328: 251–254.

    Google Scholar 

  • Sasaki H, Hamada T, Ueda R, Seki T, Higashinakagawa T, Sasaki Y (1991) Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting.Development 111: 573–581.

    Google Scholar 

  • Sasaki H, Jones PA, Chaillet JR et al (1992) Parental imprinting: potentially active chromatin of the repressed maternal allele of the mouse insulin-like growth factor II (Igf2) gene.Genes Dev 6: 1843–1856.

    Google Scholar 

  • Schmauss C, McAlliser G, Ohosone Y, Hardin JA, Lerner MR (1989) A comparison of snRNP-associated Sm-autoantigens: human N, rat N, and human B/B′.Nucl Acids Res 17: 1733–1743.

    Google Scholar 

  • Schneid H, Suerin D, Vazquez M-P, Gourmelen M, Cabrol S, Le Bouc Y (1993) Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith-Wiedemann syndrome.J Med Genet 30: 353–362.

    Google Scholar 

  • Searle AG, Beechey CV (1990) Genome imprinting phenomena on mouse chromosome 7.Genet Res 56: 237–244.

    Google Scholar 

  • Sharpe NG, Williams DG, Latchman DS (1990) Regulated expression of the small nuclear ribonucleoprotein SmN in embryonic stem cell differentiation.Mol Cell Biol 10: 6817–6820.

    Google Scholar 

  • Solter D (1988) Differential imprinting and expression of maternal and paternal genomes.Annu Rev Genet 22: 127–146.

    Google Scholar 

  • Spence JE, Perciaccante RG, Greig GM et al (1988) Uniparental disomy as a mechanism of human genetic disease.Am J Hum Genet 42: 217–226.

    Google Scholar 

  • Spotila LD, Sereda L, Prockop DJ (1992) Partial isodisomy for maternal chromosome 7 and short stature in an individual with a mutation at the COLIA2 locus.Am J Hum Genet 51: 1396–1405.

    Google Scholar 

  • Stöger R, Kubicka P, Liu C-G et al (1993) Maternal specific methylation of the imprinted insulin like growth factor type-2 receptor locus identifies the expressed locus as carrying the imprinting signa.Cell 73: 61–71.

    Google Scholar 

  • Swain JL, Stuart TA, Leder P (1987) Parental legacy determines methylation and expression of an autosomal transgene: a molecular mechanism for parental imprinting.Cell 50: 719–727.

    Google Scholar 

  • Takagi N, Oshimura M (1973) Fluorescence and giemsa bonding studies of the allocyclic X chromosomes in embryonic and adult mouse cells.Exp Cell Res 78: 127–135.

    Google Scholar 

  • Temple IK, Cockwell A, Hassold T, Pettay D, Jacobs P (1991) Maternal uniparental disomy for chromosome 14.J Med Genet 28: 511–514.

    Google Scholar 

  • Thornhill AR, Burgoyne PS (1993) A paternally imprinted X chromosome retards the development of the early mouse embryo.Development 118: 171–174.

    Google Scholar 

  • Ueda T, Yamazaki K, Suzuki R et al (1992) Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis.Development 116: 831–839.

    Google Scholar 

  • Voss R, Ben-Simon E, Avital A et al (1989) Isodisomy of chromosome 7 in a patient with cystic fibrosis: Could uniparental disomy be common in humans?Am J Hum Genet 45: 373–380.

    Google Scholar 

  • Wang JCC, Passage MB, Yen PH, Shapiro LJ, Mohandas TK (1991) Uniparental heterodisomy for chromosome 14 in a phenotypically abnormal familial balanced 13/14 Robertsonian translocation carrier.Am J Hum Genet 48: 1069–1074.

    Google Scholar 

  • Welsh J, Chada K, Dalal SS, Cheng R, Ralph D, McClelland M (1992) Arbitrarily primed PCR fingerprinting of RNA.Nucl Acids Res 20: 4965–4970.

    Google Scholar 

  • Wilkins RJ (1988) Genomic imprinting and carcinogenesis.Lancet 1: 329–331.

    Google Scholar 

  • Winking H, Silver LM (1984) Characterization of a recombinant mouset-haplotype that expresses a dominant lethal maternal effect.Genetics 108: 1013–1020.

    Google Scholar 

  • Zemel S, Bartolomei MS, Tilghman SM (1992) Physical linkage of two mammalian imprinted genes.Nature Genet 2: 61–65.

    Google Scholar 

  • Zhang Y, Shields T, Crenshaw T, Moulton T, Tycko B (1993) Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms Tumour and potential for somatic allele switching.Am J Hum Genet 53: 113–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattanach, B.M., Jones, J. Genetic imprinting in the mouse: Implications for gene regulation. J Inherit Metab Dis 17, 403–420 (1994). https://doi.org/10.1007/BF00711356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711356

Keywords

Navigation