Skip to main content
Log in

Organization of the human genome

  • Published:
Journal of Inherited Metabolic Disease

Summary

The human genome contains about 3×109 base pairs which, based on average estimates for the size of coding regions, might suggest an upper limit of about 3 million genes. Evidence from a variety of approaches indicates a much lower figure — in the range 40 000–100 000 genes. Renaturation kinetic analysis reveals the presence of many repetitive elements in the human genome. Some of these are quite simple and highly reiterated, others are more complex and exist in fewer copies. The distribution and function of some of these families and the evolution of complex genomes from simpler ones are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antequera F, Bird A (1993) DNA methylation and CpG islands. In Heslop-Harrison JS, Flavell RB, eds.The Chromosome, BIOS Scientific Publishers, 127–133.

  • Blackburn EH (1992) Telomerases.Annu Rev Biochem 61: 113–129.

    Google Scholar 

  • Britten RY, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of humanAlu repeated sequences.Proc Natl Acad Sci USA 85: 4770–4774.

    Google Scholar 

  • Craig IW, Craig SP (1991) Genomic distribution of coding sequences homologous to those on chromosome 12.Cytogenet Cell Genet 58: 1851–1852.

    Google Scholar 

  • Craig IW, McBride OW (1991) Report of the committee on the genetic constitution of chromosome 12.Cytogenet Cell Genet 58: 555–579.

    Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element.Science 254: 1805–1808.

    Google Scholar 

  • Fraser NJ, Boyd Y, Craig IW (1988) Isolation and characterisation of a human variable copy number tandem repeat at Xpcen-11.22 with potential to form a cruciform structure.Genomics 5: 144–148.

    Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Nag A (1984) Replication timing of genes and middle repetitive sequences.Science 224: 686–689.

    Google Scholar 

  • Haldane JBS (1957)J Genet 55: 511–524.

    Google Scholar 

  • Hendriks RW, Chen Z-Y, Hinds H, Schuurman RKB, Craig IW (1992) An X chromosome inactivation assay based on differential methylation of a CpG island coupled to a VNTR at the 5′ end of the monoamine oxidase A gene.Hum Mol Genet 1: 187–194.

    Google Scholar 

  • Jeffreys AJ (1987) Highly variable minisatellites and DNA fingerprints.Biochem Soc Trans 15: 309–317.

    Google Scholar 

  • Jeffreys AJ, Flavell RA (1990) The rabbit beta-globin gene contains a large insert in the coding sequence.Genomics 77: 1–11.

    Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organisation: Alu, Lines and the molecular structure of metaphase chromosome bands.Cell 53: 391–400.

    Google Scholar 

  • Levinson B, Kenwrick S, Lakich D, Hammonds G Jr, Gitschier J (1990) A transcribed gene in an intron of the human factor VIII gene.Genomics 7: 1–11.

    Google Scholar 

  • Matsumuto H, Masukata H, Muro Y, Nozaki N, Okasaki T (1989) A human centromere antigen (CENP-B) interacts with a short, specific sequence in alphoid DNA, a human centromeric satellite.J Cell Biol 109: 1962–1973.

    Google Scholar 

  • Maynard-Smith J (1968)Nature 219: 1114–1116.

    Google Scholar 

  • Meitinger T, Fraser NJ, Lorenz B, Zrenner E, Murken J, Craig IW (1989) Linkage of X-linked retinitis pigmentosa to the hypervariable DNA marker M27B (DXS255).Hum Genet 81: 283–286.

    Google Scholar 

  • Nelson DL, Warren ST (1993) Trinucleotide repeat instability: when and where?Nature Genetics 4: 107–108.

    Google Scholar 

  • Oliver SG, Aart QJM van der, Agostoni-Carbone ML et al (1992) The complete DNA sequence of yeast chromosome III.Nature 357: 38–46.

    Google Scholar 

  • Pardue ML, Gall JG (1970) Chromosomal localisation of mouse satellite DNS.Proc Natl Acad Sci USA 168: 1356–1358.

    Google Scholar 

  • Singer M (1982) Highly repeated sequences in mammalian genomes.Int Rev Cytol 76: 67–112.

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction.Am J Hum Genet 44: 388–396.

    Google Scholar 

  • Weissenbach J, Gyapay G, Dib C et al (1992) A second generation linkage map of the human genome.Nature 359: 794–801.

    Google Scholar 

  • Zhang Y, Shields T, Crenshaw T, Hao Y, Moulton T, Tycko B (1993) Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms tumor, and potential for somatic allele switching.Am J Hum Genet 53: 113–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, I.W. Organization of the human genome. J Inherit Metab Dis 17, 391–402 (1994). https://doi.org/10.1007/BF00711355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711355

Keywords

Navigation