Skip to main content
Log in

Review: The immunochemical analysis of enzyme from mucopolysaccharidoses patients

  • Published:
Journal of Inherited Metabolic Disease

Summary

The immunochemical analysis of enzyme from mucopolysaccharidoses (MPS) patients is aimed at defining the level and nature of the enzymically deficient protein produced by specific gene mutations. Immunochemical techniques allow purification of enzyme, characterization of the composite molecular species, measurement of cellular protein content, investigation of protein biosynthesis, determination of subcellular distribution, as well as information on protein structure and folding. This review focuses on the application of immunochemical techniques to the study of the aberrant protein produced in skin fibroblast cells derived from MPS patients. The analysis of enzyme protein has been applied to phenotype expression within single enzyme deficiency disorders. It is proposed that reliable prediction of MPS patient phenotype may require a combined approach utilizing immunochemical, biochemical, cell biological and gene analysis. However, this review will address the structure and nature of the protein produced in cells from MPS patients, the biological activity of this protein, and the incorporation of the protein into, and location within, subcellular fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton LJ, Brooks DA, McCourt PAG, Muller VJ, Clements PR, Hopwood JJ (1992) Immunoquantification and enzyme kinetics of α-L-iduronidase in cultured fibroblasts from normal controls and mucopolysaccharidosis type I patients.Am J Hum Genet 50: 787–794.

    Google Scholar 

  • Bell CE, Sly WS, Brot FE (1977) Human β-glucuronidase deficiency mucopolysaccharidosis. Identification of cross-reactive antigen in cultured fibroblasts of deficient patients by immunoassay.J Clin Invest 59: 97–105.

    Google Scholar 

  • Brooks DA, McCourt PAG, Gibson GJ, Hopwood JJ (1990) Immunoquantification of the low abundance lysosomal enzymeN-acetylgalactosamine 4-sulphatase.J Inher Metab Dis 13: 108–120.

    Google Scholar 

  • Brooks DA, Gibson GJ, McCourt PAG, Hopwood JJ (1991a) A specific fluorogenic assay forN-acetylgalactosamine-4-sulphatase activity using immunoadsorption.J Inher Metab Dis 14: 5–12.

    Google Scholar 

  • Brooks DA, McCourt PAG, Gibson GJ, Ashton LJ, Shutter M, Hopwood JJ (1991b) Analysis ofN-acetylgalactosamine-4-sulfatase protein and kinetics in mucopolysaccharidosis type VI patients.Am J Hum Genet 48: 710–719.

    Google Scholar 

  • Brooks DA, Harper GS, Gibson GJ et al (1992) Hurler syndrome: a patient with abnormally high levels of α-l-iduronidase protein.J Biochem Med Metab Biol 47: 211–220.

    Google Scholar 

  • Butler JE, Peterman JH, Suter M, Dierks SE (1987) The immunochemistry of solid-phase sandwich enzyme-linked immunosorbent assays.Fedn Proc 46: 2548–2556.

    Google Scholar 

  • Clements PR, Brooks DA, Saccone GTP, Hopwood JJ (1985) Human α-L-iduronidase. Purification, monoclonal antibody production, native and subunit molecular mass.Eur J Biochem 152: 21–28.

    Google Scholar 

  • Clements PR, Brooks DA, McCourt PAG, Hopwood JJ (1989) Immunopurification and characterization of human alpha-L-iduronidase with the use of monoclonal antibodies.Biochem J 259: 199–208.

    Google Scholar 

  • Conzelmann E, Sandhoff K (1983/1984) Partial enzyme deficiencies: Residual activities and the development of neurological disorders.Dev Neurosci 6: 58–71.

    Google Scholar 

  • Daniele A, Di Natale P (1987) Hunter syndrome: presence of material cross-reacting with antibodies against iduronate sulfatase.Hum Genet 75: 234–238.

    Google Scholar 

  • Gasa S, Balbaa M, Nakamura M, Yonemori H, Makita A (1987) Phosphorylation of human lysosomal arylsulfatase B by cAMP-dependent protein kinase. Different sites of phosphorylation between normal and cancer tissues.J Biol Chem 262: 1230–1238.

    Google Scholar 

  • Gautron S, Poenaru L, Boue J, Puissant H, Lisman JJW, Dreyfus J-C (1983) Evidence for the presence of β-subunit of hexosaminidase in a case of Sandhoff disease using a blotting technique.Hum Genet 63: 189–191.

    Google Scholar 

  • Gibson GJ, Saccone GTP, Brooks DA, Clements PR, Hopwood JJ (1987) HumanN-acetylgalactosamine-4-sulphate sulphatase. Purification, monoclonal antibody production and native and subunitM r values.Biochem J 248: 755–764.

    Google Scholar 

  • Ginns EG (1989) Application of immunoblotting to the study of the molecular genetics of inherited metabolic disorders. In Bjerrum OJ, Heegaard NHH eds.CRC Handbook of Immunoblotting of Proteins, vol. II. Boca Raton: CRC Press, 189–198.

    Google Scholar 

  • Glossl J, Lembeck K, Gamse G, Kresse H (1980) Morquio's disease type A: absence of material cross reacting with antibodies againstN-acetylgalactosamine-6-sulfate.Hum Genet 54: 87–91.

    Google Scholar 

  • Hasilik A, Neufeld EF (1980) Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight.J Biol Chem 255: 4937–4945.

    Google Scholar 

  • Himeno M, Koutoku H, Ishikawa T, Kato K (1989) Acid phosphatase in rat liver lysosomal membranes: purification and characterization.J Biochem 105: 449–456.

    Google Scholar 

  • Hopwood JJ, Harrison JR (1982) High-resolution electrophoresis of urinary glycosaminoglycans: an improved screening test for the mucopolysaccharides.Anal Biochem 119: 120–127.

    Google Scholar 

  • Hopwood JJ, Morris CP (1990) The mucopolysaccharidoses. Diagnosis, molecular genetics and treatment.Mol Biol Med 7: 381–404.

    Google Scholar 

  • Hopwood JJ, Muller V (1979) Biochemical discrimination of Hurler and Scheie syndromes.Clin Sci 57: 265–272.

    Google Scholar 

  • Ishikawa E (1987) Development and clinical application of sensitive enzyme immunoassay for macromolecular antigens — a review.Clin Biochem 20: 375–385.

    Google Scholar 

  • Jin W-D, Jackson CE, Desnick RJ, Schuchman EH (1992) Mucopolysaccharidosis type VI: Identification of three mutations in the arylsulphatase B gene of patients with the severe and mild phenotypes provides molecular evidence for genetic heterogeneity.Am J Hum Genet 50: 795–800.

    Google Scholar 

  • McKusick VA, Neufeld EF (1983) The mucopolysaccharide storage diseases. In Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS eds.The Metabolic Basis of Inherited Disease, 5th edn. New York: McGraw-Hill, 751–777.

    Google Scholar 

  • Myerowitz R, Neufeld EF (1981) Maturation of α-l-iduronidase in cultured human fibroblasts.J Biol Chem 256: 3044–3048.

    Google Scholar 

  • Myerowitz R, Robbins AR, Proia RL, Sahagian GG, Puchalski CM, Neufeld EF (1983) Studies of lysosomal enzyme biosynthesis in cultured cells.Methods Enzymol 96: 729–736.

    Google Scholar 

  • Neufeld EF (1980) The uptake of enzymes into lysosomes: an overview.Birth Defects 16: 77–84.

    Google Scholar 

  • Neufeld EF, Muenzer J (1989) The mucopolysaccharidoses. In Scriver CR, Beaudet AL, Sly WS, Valle D, eds.The Metabolic Basis of Inherited Disease, 6th edn. New York: McGraw-Hill, 1565–1587.

    Google Scholar 

  • Parenti G, Willemsen R, Hoogeveen AT, Verleun-Mooyman M, Van Dongen JM, Galjaard H (1987) Immunocytochemical localization of lysosomal acid phosphatase in normal and ‘I-cell’ fibroblasts.Eur J Cell Biol 43: 121–127.

    Google Scholar 

  • Parkhouse RM (1984) Immunopurification.Br Med Bull 40: 297–301.

    Google Scholar 

  • Peters C, Braun M, Weber B et al (1990) Targeting of a lysosomal membrane protein: a tyrosine containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes.EMBO J:9: 3497–3506

    Google Scholar 

  • Roden L (1980) Structure and metabolism of connective tissue proteoglycans. In Lennarz WJ, ed.The Biochemistry of Glycoproteins and Proteoglycans. New York: Plenum Press, 267–371.

    Google Scholar 

  • Rohrborn W, von Figura K (1978) Human placenta α-N-acetylglucosaminidase: Purification, characterization and demonstration of multiple recognition forms.Hoppe-Seyler's Z Physiol Chem 359: 1353–1362.

    Google Scholar 

  • Rome LH, Garvin AJ, Neufeld EF (1978) Human kidney α-l-iduronidase: Purification and characterisation.Arch Biochem Biophys 189: 344–353.

    Google Scholar 

  • Rose JK, Doms RW (1988) Regulation of protein export from the endoplasmic reticulum.Annu Rev Cell Biol 4: 257–288.

    Google Scholar 

  • Schuchman EH, Desnick RJ (1988) Mucopolysaccharidosis type I subtypes. Presence of immunologically cross-reactive material and in vitro enhancement of the residual α-l-iduronidase activities.J Clin Invest 81: 98–105.

    Google Scholar 

  • Schuchman EH, Guzman NA, Desnick RJ ((1984) Human α-l-iduronidase. I. Purification and properties of the high uptake (higher molecular weight) and the low uptake (processed) forms.J Biol Chem 259: 3132–3140.

    Google Scholar 

  • Scott HS, Ashton LJ, Eyre HJ et al (1990) Chromosomal localization of the human α-l-iduronidase gene (IDUA) to 4p16.3.Am J Hum Genet 47: 802–807.

    Google Scholar 

  • Scott HS, Litjens T, Nelson PV, Brooks DA, Hopwood JJ, Morris CP (1992) α-l-Iduronidase mutations (Q70X and P533R) associated with a severe Hurler phenotype.Hum Mutation 1: 333–339.

    Google Scholar 

  • Shankaran R, Ameen M, Daniel WL, Davidson RG, Chang PL (1991) Characterization of arylsulfatase C isozymes from human liver and placenta.Biochim Biophys Acta 1078: 251–257.

    Google Scholar 

  • Siciliano L, Fiumara A, Pavone L et al (1991) Sanfilippo syndrome type D in two adolescent sisters.J Med Genet 28: 402–405.

    Google Scholar 

  • Steckel F, Hasilik A, von Figura K (1983) Biosynthesis and maturation of arylsulfatase B in normal and mutant cultured fibroblasts.J Biol Chem 258: 14322–14326.

    Google Scholar 

  • Sukegawa K, Orii T (1985) Quantitation and biosynthesis of β-glucuronidase cross-reactive material in fibroblasts from patients with mucopolysaccharidosis VII.J Inher Metab Dis 8: 145–146.

    Google Scholar 

  • Sukegawa K, Tomatsu S, Tamai Ket al (1992) Intermediate form of mucopolysaccharidosis type II (Hunter disease): A C1237 to T substitution in the iduronate sulphatase gene.Biochem Biophys Res Commun 183: 809–813.

    Google Scholar 

  • Taylor JA, Gibson GJ, Brooks DA, Hopwood JJ (1990) HumanN-acetylgalactosamine-4-sulphatase biosynthesis and maturation in normal, Maroteaux-Lamy and multiple-sulphatase-deficient fibroblasts.Biochem J 268: 379–386.

    Google Scholar 

  • Taylor JA, Gibson GJ, Brooks DA, Hopwood JJ (1991) α-l-Iduronidase in normal and mucopolysaccharidosis-type-I human skin fibroblasts.Biochem J 274: 263–268.

    Google Scholar 

  • von Figura K, Hasilik A, Steckel F, van de Kamp J (1984) Biosynthesis and maturation of α-N-acetylglucosaminidase in normal and Sanfilippo B fibroblasts.Am J Hum Genet 36: 93–100.

    Google Scholar 

  • Wicker G, Prill V, Brooks D et al (1991) Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): An intermediate clinical phenotype caused by substitution of valine for glycine at position 137 of arylsulfatase B.J Biol Chem 266: 21386–21391.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, D.A. Review: The immunochemical analysis of enzyme from mucopolysaccharidoses patients. J Inherit Metab Dis 16, 3–15 (1993). https://doi.org/10.1007/BF00711309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711309

Keywords

Navigation