Skip to main content
Log in

Regulatory properties of brain glutamate decarboxylase

  • Review and Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Glutamate decarboxylase is a focal point for controllingγ-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditionsin vivo.

  2. 2.

    The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5′-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two.

  3. 3.

    The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5′-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5′-phosphate and inorganic phosphate promote holoenzyme formation.

  4. 4.

    Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abercrombie, D. M., and Martin, D. L. (1980). Inhibition of pyridoxal kinase by the pyridoxal-γ-aminobutyrate amine.J. Biol. Chem. 25579–84.

    Google Scholar 

  • Ames, M. M., Lerner, P., and Lovenberg, W. (1978). Tyrosine hydroxylase: Activation by protein phosphorylation and endproduct inhibition.J. Biol. Chem. 25327–31.

    Google Scholar 

  • Angel, I., Fleissner, A., and Seifert, R. (1983). Synaptic vesicles from hog brain—their isolation and coupling between synthesis and uptake of gamma-aminobutyrate by glutamate decarboxylase.Neurochem. Int. 5697–712.

    Google Scholar 

  • Bayon, A., Possani, L. D., and Tapia, R. (1977a). Kinetics of brain glutamate decarboxylase. Inhibition studies with N-(5′-phosphopyridoxyl) amino acids.J. Neurochem. 29513–517.

    Google Scholar 

  • Bayon, A., Possani, L. D., Tapia, M., and Tapia, R. (1977b). Kinetics of brain glutamate decarboxylase. Interactions with glutamate, pyridoxal 5′-phosphate and the glutamate-pyridoxal 5′-phosphate Schiff base.J. Neurochem. 29519–525.

    Google Scholar 

  • Blindermann, J.-M., Maitre, M., Ossola, L., and Mandel, P. (1978). Purification and some properties of L-glutamate decarboxylase from human brain.Eur. J. Biochem. 86143–152.

    Google Scholar 

  • Blindermann, J.-M., Maitre, M., and Mandel, P. (1979). Apoenzyme concentration and turnover number of L-glutamate decarboxylase in some regions of rat brain.J. Neurochem. 32245–246.

    Google Scholar 

  • Chapman, A. G., and Evans, M. C. (1983). Cortical GABA turnover during bicuculline seizures in rats.J. Neurochem. 41886–889.

    Google Scholar 

  • Chapman, A. G., Croucher, M. J., and Meldrum, B. S. (1984). Anticonvulsant activity of intracerebroventricularly administered valproate and valproate analogues. A dose-dependent correlation with changes in brain aspartate and GABA levels in DBA/2J mice.Biochem. Pharmacol. 331459–1463.

    Google Scholar 

  • Choi, S. Y., and Churchich, J. E. (1986). Glutamate decarboxylase side reactions catalyzed by the enzyme.Eur. J. Biochem. 160515–520.

    Google Scholar 

  • Christenson, J. G., Dairman, W., and Udenfriend, S. (1970). Preparation and properties of a homogeneous aromatic L-amino acid decarboxylase from hog kidney.Arch. Biochem. Biophys. 141356–367.

    Google Scholar 

  • Covarrubias, M., and Tapia, R. (1978). Calcium-dependent binding of brain glutamate decarboxylase to phospholipid vesicles.J. Neurochem. 311209–1214.

    Google Scholar 

  • Denner, L. A., and Wu. J.-Y. (1985). Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate.J. Neurochem. 44957–965.

    Google Scholar 

  • Denner, L. A., Wei, S. C., Lin, H. S., Lin, C.-T., and Wu, J.-Y. (1987). Brain L-glutamate decarboxylase: Purification and subunit structure.Proc. Natl. Acad. Sci. USA 84668–672.

    Google Scholar 

  • Ebadi, M., Itoh, M., Bifano, J., Wendt, K., and Earle, A. (1981). The role of Zn2+ in pyridoxal phosphate mediated regulation of glutamic acid decarboxylase in brain.Int. J. Biochem. 131107–1112.

    Google Scholar 

  • Fersht, A. (1977).Enzyme Structure and Mechanism, W. H. Freeman, San Francisco, pp. 274–287.

    Google Scholar 

  • Fonnum, F. (1968). The distribution of glutamate decarboxylase and aspartate transaminase in subcellular fractions of rat and guinea-pig brain.Biochem. J. 106401–412.

    Google Scholar 

  • Fonnum, F., and Walberg, F. (1973a). An estimation of the concentration ofγ-aminobutyric acid and glutamate decarboxylase in the Purkinje axon terminals in the cat.Brain Res. 54115–127.

    Google Scholar 

  • Fonnum, F., and Walberg, F. (1973b). The concentration of GABA within inhibitory nerve terminals.Brain Res. 62577–579.

    Google Scholar 

  • Giorgi, O., and Meek, J. L. (1984).γ-Aminobutyric acid turnover in rat striatum: Effects of glutamate and kainic acid.J. Neurochem. 42215–220.

    Google Scholar 

  • Gold, B. I., Simon, J. R., and Roth, R. H. (1978). Glutamic acid decarboxylase activity in striatal slices: Persistent increase following depolarization.Life Sci. 22187–194.

    Google Scholar 

  • Gottlieb, D. I., Chang, Y.-C., and Schwob, J. E. (1986). Monoclonal antibodies to glutamic acid decarboxylase.Proc. Natl. Acad. Sci. USA 838808–8812.

    Google Scholar 

  • Haycock, J. W., Meligeni, J. A., Bennet, W. F., and Waymire, J. C. (1982). Phosphorylation and activation of tyrosine hydroxylase mediate the acetylcholine-induced increase in catecholamine biosynthesis.J. Biol. Chem. 25712641–12648.

    Google Scholar 

  • Huger, F. P., and Gold, B. I. (1980). Tetrodotoxin inhibitionin vitro of protoveratrine A activated glutamate decarboxylase in synaptosomes.Biochem. Pharmacol. 293034–3036.

    Google Scholar 

  • Itoh, M., and Uchimura, H. (1981). Regional differences in saturation of glutamate decarboxylase (GAD) in discrete brain nuclei of the rat.Neurochem. Res. 61283–1289.

    Google Scholar 

  • John, R. A., and Fowler, L. J. (1976). Kinetic and spectral properties of rabbit brain 4-aminobutyrate transaminase.Biochem. J. 155645–651.

    Google Scholar 

  • Kaufman, D. L., McGinnis, J. F., Krieger, N. R., and Tobin, A. J. (1986). Brain glutamate decarboxylase cloned inλgt-11: Fusion protein produces aminobutyric acid.Science 2321138–1140.

    Google Scholar 

  • Kobayashi, Y., Kaufman, D. L., and Tobin, A. J. (1987). Glutamic acid decarboxylase cDNA: Nucleotide sequence encoding an enzymatically active fusion protein.J. Neurosci. 72768–2772.

    Google Scholar 

  • Kuhn, D. M., O'Callaghan, J. P., Juskevich, J., and Lovenberg, W. (1980). Activation of brain tryptophan hydroxylase by ATP-Mg2+: Dependence on calmodulin.Proc. Natl. Acad. Sci. USA 774688–4691.

    Google Scholar 

  • Legay, F., Pelhate, S., and Tappaz, M. L. (1986). Phytogenesis of brain glutamic acid decarboxylase from vertebrates: Immunochemical studies.J. Neurochem. 461478–1486.

    Google Scholar 

  • Legay, F., Henry, S., and Tappaz, M. (1987). Evidence for two distinct forms of native glutamic acid decarboxylase in rat brain soluble extract: An immunoblotting study.J. Neurochem. 481022–1026.

    Google Scholar 

  • Maitre, M., Blindermann, J. M., Ossola, L., and Mandel, P. (1978). Comparison of the structure of L-glutamate decarboxylase from human and rat brains.Biochem. Biophys. Res. Commun. 85885–890.

    Google Scholar 

  • Martin, D. L., and Martin, S. B. (1982). Effect of nucleotides and other inhibitors on the inactivation of glutamate decarboxylase.J. Neurochem. 391001–1008.

    Google Scholar 

  • Martin, S. B., and Martin, D. L. (1979). Stimulation by phosphate of the activation of glutamate apodecarboxylase by pyridoxal-5′-phosphate and its implications for the control of GABA synthesis.J. Neurochem. 331275–1283.

    Google Scholar 

  • Martin, D. L., and Porter, T. G. (1987). Stability and activation of glutamate apodecarboxylase.J. Neurochem. 48 (Suppl):S147.

    Google Scholar 

  • Martin, D. L., Meeley, M. P., Martin, S. B., and Pederson, S. (1980). Factors influencing the activation and inactivation of glutamate decarboxylase.Brain Res. Bull. 5 (Suppl 2):57–61.

    Google Scholar 

  • Matsuda, T., Wu, J.-Y., and Roberts, E. (1973). Electrophoresis of glutamic acid decarboxylase (EC 4.1.1.15) from mouse brain in sodium dodecyl sulphate polyacrylamide gels.J. Neurochem. 21167–172.

    Google Scholar 

  • Meeley, M. P., and Martin, D. L. (1983a). Inactivation of brain glutamate decarboxylase and the effects of adenosine 5′-triphosphate and inorganic phosphate.Cell. Mol. Neurobiol. 339–54.

    Google Scholar 

  • Meeley, M. P., and Martin, D. L. (1983b). Reactivation of substrate-inactivated brain glutamate decarboxylase.Cell. Mol. Neurobiol. 355–68.

    Google Scholar 

  • Miller, L. P., Walters, J. R., and Martin, D. L. (1977). Post-mortem changes implicate adenine nucleotides and pyridoxal-5′-phosphate in regulation of brain glutamate decarboxylase.Nature 266847–848.

    Google Scholar 

  • Miller, L. P., and Walters, J. R. (1979). Effects of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes.J. Neurochem. 33533–539.

    Google Scholar 

  • Miller, L. P., Martin, D. L., Mazumder, A., and Walters, J. R. (1978). Studies on the regulation of GABA synthesis: Substrate-promoted dissociation of pyridoxal-5′-phosphate from GAD.J. Neurochem. 30361–369.

    Google Scholar 

  • Miller, L. P., Walters, J. R., Eng, N., and Martin, D. L. (1980). Glutamate holodecarboxylase levels and the regulation of GABA synthesis.Brain Res. Bull. 5 (Suppl. 2):89–94.

    Google Scholar 

  • Minchin, M. W. C., and Fonnum, F. (1979). The metabolism of GABA and other amino acids in rat substantia nigra slices following lesions of the striato-nigral pathway.J. Neurochem. 32203–209.

    Google Scholar 

  • Moroni, F., Cheney, D. L., Peralta, E., and Costa, E. (1978). Opiate receptor agonists as modulators ofγ-aminobutyric acid turnover in nucleus caudatus, globus pallidus, and substantia nigra of the rat.J. Pharmacol. Exp. Ther. 207870–877.

    Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Tappaz, M. L., and Kopin, I. (1981a). Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-antibody complex.Neuroscience 62689–2700.

    Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Weise, V. K., Ransom, D. H., Tappaz, M. L., Krutzsch, H. C., and Kopin, I. J. (1981b). Comparison of cysteine sulphinic acid decarboxylase isoenzymes and glutamic acid decarboxylation in rat liver and brain.Neuroscience 62701–2714.

    Google Scholar 

  • Oertel, W. H., Schmechel, D. E., Mugnaini, E., Tappaz, M. L., and Kopin, I. J. (1981c). Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum.Neuroscience 62715–2735.

    Google Scholar 

  • Patel, A. J., Johnson, A. L., and Balazs, R. (1974). Metabolic compartmentation of glutamate associated with the formation of gamma-aminobutyrate.J. Neurochem. 231271–1279.

    Google Scholar 

  • Porter, T. G., and Martin, D. L. (1984). Evidence for feedback regulation of glutamate decarboxylase byγ-aminobutyric acid.J. Neurochem. 431464–1467.

    Google Scholar 

  • Porter, T. G., and Martin, D. L. (1986). Non-steady state kinetics of brain glutamate decarboxylase resulting from interconversion of the apo- and holoenzyme.Biochim. Biophys. Acta 874235–244.

    Google Scholar 

  • Porter, T. G., and Martin, D. L. (1987). Rapid inactivation of brain glutamate decarboxylase by aspartate.J. Neurochem. 4867–72.

    Google Scholar 

  • Porter, T. G., Spink, D. C., Martin, S. B., and Martin, D. L. (1985). Transaminations catalyzed by brain glutamate decarboxylase.Biochem. J. 231705–712.

    Google Scholar 

  • Porter, T. G., Martin, S. B., and Martin, D. L. (1986). Activation of glutamate apodecarboxylase by succinic semialdehyde and pyridoxamine 5′-phosphate.J. Neurochem. 47468–471.

    Google Scholar 

  • Pritchard, M., Seeley, J. E., Poso, H., Jefferson, L., and Pegg, A. E. (1981). Binding of radioactiveα-difluoromethylornithine to rat liver ornithine decarboxylase.Biochem. Biophys. Res. Commun. 1001597–1603.

    Google Scholar 

  • Roberts, E., Younger, F., and Frankel, S. (1951). Influence of dietary pyridoxine on glutamic decarboxylase activity of brain.J. Biol. Chem. 191277–285.

    Google Scholar 

  • Ryan, L. D., and Roskoski, R. (1976). Resolution and reconstitution of glutamate decarboxylase from cerebellum.Neurochem. Res. 137–45.

    Google Scholar 

  • Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E., and Vaughn, J. E. (1974). Immunohistochemical localization of glutamate decarboxylase in rat cerebellum.Proc. Natl. Acad. Sci. USA 71269–273.

    Google Scholar 

  • Salganicoff, L., and DeRobertis, E. (1965). Subcellular distribution of the enzymes of the glutamic acid, glutamine, andγ-aminobutyric acid cycles in brain.J. Neurochem. 12287–309.

    Google Scholar 

  • Sato, S. M., Frazier, J. M., and Goldberg, A. M. (1984). The distribution and binding of zinc in the hippocampus.J. Neurosci. 41662–1670.

    Google Scholar 

  • Seligmann, B., Miller, L. P., Brockman, D. E., and Martin, D. L. (1978). Studies on the regulation of GABA synthesis: The interaction of adenine nucleotides and glutamate with brain glutamate decarboxylase.J. Neurochem. 30371–376.

    Google Scholar 

  • Spink, D. C., and Martin, D. L. (1983). Multiple forms of glutamate decarboxylase in hog, rat, and human brain. InGlutamate, Glutamine and GABA in the Central Nervous System (L. Hertz, E. Kvamme, E. G. McGeer, and A. Schousboe, Eds.), Alan R. Liss, New York, pp. 129–143.

    Google Scholar 

  • Spink, D. C., Wu, S. J., and Martin, D. L. (1983). Multiple forms of glutamate decarboxylase in porcine brain.J. Neurochem. 401113–1119.

    Google Scholar 

  • Spink, D. C., Porter, T. G., Wu, S. J., and Martin, D. L. (1985). Characterization of three kinetically distinct forms of glutamate decarboxylase from pig brain.Biochem. J. 231695–703.

    Google Scholar 

  • Spink, D. C., Porter, T. G., Wu, S. J., and Martin, D. L. (1987). Kinetically different, multiple forms of glutamate decarboxylase in rat brain.Brain Res. 421235–244.

    Google Scholar 

  • Storm-Mathisen, J., and Ottersen, O. P. (1986). Antibodies against amino acid neurotransmitters. InNeurohistochemistry: Modern Methods and Applications, Alan R. Liss, New York, pp. 107–136.

    Google Scholar 

  • Stelzer, A., Laas, R., and Fleissner, A. (1985). Subcellular distribution of glutamic acid decarboxylase in rat brain regions following electroconvulsive stimulation.J. Neural Transmiss. 6299–106.

    Google Scholar 

  • Susz, J.-P., Haber, B., and Roberts, E. (1966). Purification and some properties of mouse brain L-glutamic decarboxylase.Biochemistry 52870–2876.

    Google Scholar 

  • Sze, P. Y., Sullivan, P., Alderson, R. F., and Towle, A. C. (1983). ATP binding to brain L-glutamic acid decarboxylase: A study by affinity chromatography.Neurochem. Int. 551–56.

    Google Scholar 

  • Szerb, J. C. (1982). Turnover and release of GABA in rat cortical slices: Effect of a GABA-T inhibitor gabaculine.Neurochem. Res. 7191–204.

    Google Scholar 

  • Taberner, P. V., Pearce, M. J., and Watkins, J. C. (1977). The inhibition of mouse brain glutamate decarboxylase by some structural analogues of L-glutamic acid.Biochem. Pharmacol. 26345–349.

    Google Scholar 

  • Tapia, R., and Meza-Ruiz, G. (1975). Differences in some properties of newborn and adult glutamate decarboxylase.J. Neurobiol. 6171–181.

    Google Scholar 

  • Tapia, R., and Meza-Ruiz, G. (1976). Changes in some properties of glutamate decarboxylase activity during maturation of the brain.Neurochem. Res. 1133–140.

    Google Scholar 

  • Tapia, R., and Sandoval, M. E. (1971). Study on the inhibition of brain glutamate decarboxylase by pyridoxal phosphate oxime-o-acetic acid.J. Neurochem. 182051–2059.

    Google Scholar 

  • Tunnicliff, G., and Ngo, T. T. (1986). Regulation ofγ-aminobutyric acid synthesis in the vertebrate nervous system.Neurochem. Int. 6287–297.

    Google Scholar 

  • Tursky, T. (1970). Inhibition of brain glutamate decarboxylase by adenosine triphosphate.Eur. J. Biochem. 12544–549.

    Google Scholar 

  • Tursky, T. (1974). The inhibition of brain pyridoxal kinase activity byγ-aminobutyric acid.Biochemistry 39944–949 (Engl. transl.Biokhimya).

    Google Scholar 

  • Wu, J.-Y. (1976). Purification, characterization and kinetic studies of GAD and GABA-T from mouse brain. InGABA in Nervous System Function (E. Robert, E. Chase, and D. B. Tower, Eds.), Raven Press, New York, pp. 7–60.

    Google Scholar 

  • Wu, J.-Y., and Roberts, E. (1974). Properties of brain L-glutamate decarboxylase: Inhibition studies.J. Neurochem. 23759–767.

    Google Scholar 

  • Wu, J.-Y., Matsuda, T., and Roberts, E. (1973). Purification and characterization of glutamate decarboxylase from mouse brain.J. Biol. Chem. 2483029–3034.

    Google Scholar 

  • Wu, J.-Y., Wong, E., Saito, K., Roberts, E., and Schousboe, A. (1976). Properties of L-glutamate decarboxylase from brains of adult and newborn mice.J. Neurochem. 27653–659.

    Google Scholar 

  • Wu, J.-Y., Denner, L. A., Wei, S. C., Lin, C. T., Song, G.-X., Xa, Y. F., Liu, J. W., and Lin, H. S. (1986). Production and characterization of polyclonal and monoclonal antibodies to rat brain L-glutamate decarboxylase.Brain Res. 3731–14.

    Google Scholar 

  • Wu, S. J., and Martin, D. L. (1984). Binding of ATP to brain glutamate decarboxylase as studied by affinity chromatography.J. Neurochem. 421607–1612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, D.L. Regulatory properties of brain glutamate decarboxylase. Cell Mol Neurobiol 7, 237–253 (1987). https://doi.org/10.1007/BF00711302

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711302

Key words

Navigation