Boundary-Layer Meteorology

, Volume 73, Issue 3, pp 211–225 | Cite as

Dependence of geostrophic drag on intensity of convection, baroclinicity, and acceleration

  • Richard D. Crago
  • Wilfried Brutsaert
Article

Abstract

This paper examines the practical importance of stability, baroclinicity, and acceleration in the bulk ABL similarity formulations, in light of the random errors inherent in field measurements. This is done by propagating the measurement uncertainties through a theoretical model for the bulk ABL similarity functionsA0 andB0, under a range of assumed (but always unstable) conditions. It is shown that random measurement errors and acceleration effects may overwhelm most effects of baroclinicity and stability, once conditions are at least slightly unstable. Because of this, it is hard to discern a clear functional dependence ofA0 andB0 on degree of instability. Thus, for a given value ofhi/z0, wherehi is the inversion height andz0 is the surface roughness, the geostrophic drag coefficient, which depends onA0 andB0, and weakly onhi/z0, may also be taken to be nearly independent of degree of instability.

Keywords

Convection Surface Roughness Theoretical Model Measurement Error Random Error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’,Quart. J. Roy. Meteorol. Soc. 101, 147–161.Google Scholar
  2. Arya, S. P. S.: 1977, ‘Suggested Revisions to Certain Boundary Layer Parameterization Schemes Used in Atmospheric Circulation Models’,Monthly Weath Rev. 105, 215–227.Google Scholar
  3. Arya, S. P. S.: 1978, ‘Comparative Effects of Stability, Baroclinity and the Scale-Height Ratio on Drag Laws for the Atmospheric Boundary Layer’,J. Atmos. Sci. 35, 40–46.Google Scholar
  4. Arya, S. P. S. and Wyngaard, J. C.: 1975, ‘Effect of Baroclinicity on Wind Profiles and the Geostrophic Drag Law for the Convective Planetary Boundary Layer’,J. Atmos. Sci. 32, 767–778.Google Scholar
  5. Billard, C., Andre, J. C., and Du Vachat, R.: 1981, ‘On the Similarity Functions A and B as Determined from the “Voves” Experiment’,Boundary-Layer Meteorol. 21, 495–507.Google Scholar
  6. Brutsaert, W.: 1982,Evaporation into the Atmosphere, D. Reidel, Dordrecht, 299 pp.Google Scholar
  7. Brutsaert, W.: 1992, ‘Stability Correction Functions for the Mean Wind Speed and Temperature in the Unstable Surface Layer’,Geophys. Res. Letters 19, 469–472.Google Scholar
  8. Brutsaert, W. and Sugita, M.: 1991, ‘A Bulk Similarity Approach in the Atmospheric Boundary Layer Using Radiometric Skin Temperature to Determine Regional Surface Fluxes’,Boundary-Layer Meteorol. 55, 1–23.Google Scholar
  9. Clarke, R. H. and Hess, G. D.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-Number Similarity Theory’,Boundary-Layer Meteorol. 7, 267–287.Google Scholar
  10. Crago, R. D. and Brutsaert, W.: 1994, ‘The Estimation of Surface Momentum Flux under Unstable Conditions from the Atmospheric Pressure Field’,Water Resour. Res. 30, 617–623.Google Scholar
  11. Garratt, J. R., Wyngaard, J. C., and Francey, R. J.: 1982, ‘Winds in the Atmospheric Boundary Layer — Prediction and Observation’,J. Atmos. Sci. 39, 1307–1316.Google Scholar
  12. Hasse, L.: 1976, ‘A Resistance-Law Hypothesis for the Non-Stationary Advective Planetary Boundary Layer’,Boundary-Layer Meteorol. 10, 393–407.Google Scholar
  13. Joffre, S. M.: 1985, ‘Effects of Local Accelerations and Baroclinicity on the Mean Structure of the Atmospheric Boundary Layer over the Sea’,Boundary-Layer Meteorol. 32, 237–255.Google Scholar
  14. Kazanski, A. B. and Monin, A. S.: 1960, ‘A Turbulent Regime above the Ground Atmospheric Layer’.Bull. Acad. Sci. USSR, Geophys. Ser. Eng. Transl., no.1, 110–112.Google Scholar
  15. Kline, S. J. and McClintock, F. A.: 1953, ‘Describing Uncertainties in Single-Sample Experiments’,Mechanical Engineering 75(1), 3–8.Google Scholar
  16. Kondo, J.: 1977, ‘Geostrophic Drag and the Cross-Isobar Angle of the Surface Wind in a Baroclinic Convective Boundary Layer over the Ocean’,J. Meteorol. Soc. Japan 55, 301–311.Google Scholar
  17. Mahrt, L. J.: 1974, ‘Time-Dependent, Integrated Planetary Boundary Layer Flow’,J. Atmos. Sci. 31, 457–464.Google Scholar
  18. Melas, D.: 1991, ‘Using a Simple Resistance Law to Estimate Friction Velocity from Sodar Measurements’,Boundary-Layer Meteorol. 57, 275–287.Google Scholar
  19. Melas, D.: 1993, ‘Height-Integrated Flow in the Convective Planetary Boundary Layer’,Boundary-Layer Meteorol. 63, 381–396.Google Scholar
  20. Moffat, R. J.: 1981, ‘Contributions to the Theory of Uncertainty Analysis for Single-Sample Experiments’,The 1980–1981 AFOSR-HTTM Stanford Conference on Complex Turbulent Flows, Vol. I, Stanford Univ. Dept. of Mech. Eng., Thermoscience Div., 40–56.Google Scholar
  21. Strebel, D. E., Newcomer, J. A., Ormsby, J. P., Hall, F. G., and Sellers, P. J.: 1990, ‘The FIFE information system’,IEEE Trans. Geosci. Remote Sens. 28, 703–710.Google Scholar
  22. Sugita, M. and Brutsaert, W.: 1990, ‘Wind Velocity Measurements in the Neutral Boundary Layer above Hilly Prairie’,J. Geosphys. Res. (Atmos.) 95(D6), 7617–7624.Google Scholar
  23. Suaita, M. and Brutsaert, W.: 1992, ‘The Stability Functions in the Bulk Similarity Formulations for the Unstable Boundary Layer’,Boundary Layer Meteorol. 61, 65–80.Google Scholar
  24. Yamada, T.: 1976, ‘On the Similarity Functions A, B, and C of the Planetary Boundary Layer’,J. Atmos. Sci. 33, 781–793.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Richard D. Crago
    • 1
  • Wilfried Brutsaert
    • 1
  1. 1.School of Civil and Environmental EngineeringCornell UniversityIthacaUSA

Personalised recommendations