Advertisement

Advanced Performance Materials

, Volume 1, Issue 3, pp 243–253 | Cite as

Forging compaction of amorphous Co67B33 powders obtained by mechanical alloying

  • C. Atzeni
  • M. Pes
  • U. Sanna
  • A. Corrias
  • G. Paschina
  • D. Zedda
Article

Abstract

An amorphous mechanically alloyed Co67B33 powder has been compacted by hot forging at 200, 300, 400, 500, 700°C applying a load up to 2 GPa in 2 seconds. The density approaches the theoretical value operating under inert gas at 700°C. The alloy structure changes from amorphous to crystalline. Hardness and wear resistance of the material forged at 700°C are superior to those of the starting amorphous alloy as well as to those of an alloy of identical composition obtained by conventional slow cooling of the melt.

Keywords

Structure Change Compaction Wear Resistance Mechanical Alloy Amorphous Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arzt, E. and Schultz, L. (Ed.) 1988.New Materials by Mechanical Alloying Techniques, DGM Informationsgeselschaft, Verlag, Oberursel, Germany.Google Scholar
  2. 2.
    Yavari, A.R. and Desré, P.J. (Ed.) 1990.Multilayer Amorphization by Solid-State-Reaction and Mechanical Alloying, Les Editions de Physique, Les Ulis, France.Google Scholar
  3. 3.
    deBarbadillo, J.J., Froes, F.H., and Schwarz, R.: (Ed.) 1990.Mechanical Alloying for Structural Applications, ASM International, Materials Park, Ohio.Google Scholar
  4. 4.
    Johnson, W.L. 1986.Prog. in Mater. Sci., 30, 81.Google Scholar
  5. 5.
    Yavari, A.R. and Desre, P.J. 1991. Mater. Sci. Eng., A134, 1315.Google Scholar
  6. 6.
    Kuschke, W.M., Schultz, L., Lamparter, P., and Steeb, S. 1991. Z. Naturforsch., 46a, 491.Google Scholar
  7. 7.
    Itsukaichi, T., Masuyama, K., Umemoto, M., Okane, I., and Cabanas-Moreno, J.G. 1993. 8, 1817.Google Scholar
  8. 8.
    Ranganathan, S. and Banerjee, S. Thermal Stability. InMetallic Glasses: Production, Properties and Applications, T.R. Anantharaman ed., TransTech Publications, Aedermannsdorf.Google Scholar
  9. 9.
    Brandt, H., Gossing, J., mathiak, G., and Neuhauser, H. 1993. Z. fur Metallkunde, 84, 273.Google Scholar
  10. 10.
    Furrer, P. 1986. Grain Size and Shape Control in Metals and Alloys. In:Encyclopaedia of Materials Science and Engineering, vol. 3, M.B. Bever ed., Pergamon Press, Oxford, 2051.Google Scholar
  11. 11.
    Corrias, A., Ennas, G., Licheri, G., Marongiu, G., and Paschina, G. 1991.Mater. Sci. Eng., A145, 123.Google Scholar
  12. 12.
    Corrias, A., Ennas, G., Marongiu, G., Musinu, A., and Paschina, G. 1992.J. Non-Cryst. Solids, 150, 487.Google Scholar
  13. 13.
    Corrias, A., Ennas, G., Marongiu, G., Musinu, A., and Paschina, G.: 1993J. Mater. Res., 8, 1327.Google Scholar
  14. 14.
    Kuhn, H.A. 1986. Powder Forging. InEncylopaedia of Materials Science and Engineering, vol. 5, M.B. Bever ed., Pergamon Press, Oxford 3868.Google Scholar
  15. 15.
    Kelto, C.A., Timm, E.E., and Pyzik, A.J. 1989.Annu. Rev. Mater. Sci., 19, 527.Google Scholar
  16. 16.
    Wright, R.N., Korth, G.E., and Flinn, J.E. 1987.Adv. Mater. Proc., 56.Google Scholar
  17. 17.
    Morris, D.G. 1983.Mat. Sci. Eng., 57, 187.Google Scholar
  18. 18.
    Gourdin, W.H. 1984.J. Appl. Phys., 55, 172.Google Scholar
  19. 19.
    Rosato, A.D., Vreeland, T., and Prinz, F.B. 1991.Int. Mat. Rew., 36, 45.Google Scholar
  20. 20.
    PDF card no. 25-241, Int. Centre for Diffraction Data, 1601 Park-Lane, Swarthmore PA.Google Scholar
  21. 21.
    PDF card no. 15-806, Int. Centre for Diffraction Data, 1601 Park-Lane, Swarthmore PA.Google Scholar
  22. 22.
    Rama Rao, P. and Radhakrishnan, V.M. 1984. Mechanical Properties and Applications. InMetallic Glasses: Production, Properties and Applications, T.R. Anantharaman ed., Trans Tech Publications, Aedermannsdorf, 225.Google Scholar
  23. 23.
    Lucas, G.E. 1990.Met. Trans. A21, 1105.Google Scholar
  24. 24.
    Klingger, R. and Feller, H.G. 1983.Wear, 86, 287.Google Scholar
  25. 25.
    Moreton, R. and Lancaster, J.K. 1985.J. Mat. Sci., 20, 33.Google Scholar
  26. 26.
    PDF card no. 5-0727, Int. Centre for Diffraction Data, 1601 Park-Lane, Swarthmore PA.Google Scholar
  27. 27.
    PDF card no. 3-0959, Int. Centre for Diffraction Data, 1601 Park-Lane, Swarthmore PA.Google Scholar
  28. 28.
    PDF card no. 12-0443, Int. Centre for Diffraction Data, 1601 Park-Lane, Swarthmore PA.Google Scholar
  29. 29.
    Bricknell, R.H. 1986. Grain Boundary Strengthening. InEncyclopaedia of Materials Science and Engineering, vol. 5, M.B. Bever ed., Pergamon Press, Oxford, 2038.Google Scholar
  30. 30.
    Herold, U. and Koster, U. 1988. Crystallization of Metallic glasses. InGlassy Metals I, H.J. Guntherodt and H. Beck ed. Springer, Heidelberg, 225.Google Scholar
  31. 31.
    Scott, M. and Kursumovic, A. 1982.Acta Metallurgica, 30, 853.Google Scholar
  32. 32.
    Hall, E.O. 1951.Proc. Phys. Soc., (London), B64, 747.Google Scholar
  33. 33.
    Petch, N.J. 1953.J. Iron Steel Inst., 174, 25.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • C. Atzeni
    • 1
  • M. Pes
    • 1
  • U. Sanna
    • 1
  • A. Corrias
    • 2
  • G. Paschina
    • 2
  • D. Zedda
    • 2
  1. 1.Dipartimento di Ingegneria Chimica e MaterialiUniversità degli Studi di CagliariItaly
  2. 2.Dipartimento di Scienze ChimicheUniversità degli Studi di CagliariItaly

Personalised recommendations