Advertisement

Cellular and Molecular Neurobiology

, Volume 10, Issue 3, pp 423–433 | Cite as

Regulation of nicotinic acetylcholine receptor function by adenine nucleotides

  • Vesna A. Eterović
  • Lian Li
  • Andrew Palma
  • Mark G. McNamee
Article

Summary

  1. 1.

    Nicotinic acetylcholine receptors (nAChR) from BC3H1 cells (which express a skeletal muscle-type receptor) and fromTorpedo californica electric organ were expressed inXenopus laevis oocytes and studied with a voltage-clamp technique.

     
  2. 2.

    We found that bath application of ATP in the micromolar to millimolar range increased the ACh-elicited current in both muscle and electrocyte receptors. The effect of ATP increased with successive applications. This “use-dependent” increase in potentiation was Ca2+ dependent, while the potentiation itself was not.

     
  3. 3.

    Four other nucleotides were tested on muscle nAChR: ADP, AMP, adenosine, and GTP. Of these, only ADP was a potentiator, but its effect was not use dependent. Neither ATP nor ADP affected the resting potential of the oocyte membrane.

     
  4. 4.

    ADP potentiated the response to suberyldicholine and nicotine, as well as ACh.

     
  5. 5.

    Finally, ADP reversed the phencyclidine-induced block of ACh currents in oocytes expressing muscle nAChR.

     

Key words

nicotinic acetylcholine receptor ATP ADP phencyclidine 

Abbreviations used

ACh

acetylcholine

BSA

bovine serum albmin

nAChR

nicotinic acetylcholine receptor

PCP

phencyclidine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akasu, T., and Koketsu, K. (1985). Effect of adenosine triphosphate on the sensitivity of the nicotinic acetylcholine-receptor in the bullfrog sympathetic ganglion cell.Br. J. Pharm. 84525–531.Google Scholar
  2. Akasu, T., Hirai, K., and Koketsu, K. (1981). Increase of acetylcholine-receptor sensitivity by adenosine triphosphate: A novel action of ATP on ACh-sensitivity.Br. J. Pharm. 74505–507.Google Scholar
  3. Akasu, T., Hirai, K., and Koketsu, K. (1983). Modulatory action of ATP on membrane potentials of bullfrog sympathetic ganglion cells.Neurosci. Lett. 26673–676.Google Scholar
  4. Aronstam, R. S., King, C. T., Jr., Albuquerque, E. X., Daly, J. W., and Feigl, D. M. (1985). Binding of [3H]perhydrohistrionicotoxin and [3H]phencyclidine to the nicotinic receptor-ion channel complex of Torpedo electroplax.Biochem. Pharmacol. 343037–3047.Google Scholar
  5. Ehrlich, Y. H., Snider, R. M., Kornecki, E., Garfield, M. G., and Lenox, R. H. (1988). Modulation of neuronal signal transduction systems by extracellular ATP.J. Neurochem. 50295–301.Google Scholar
  6. Eterović, V. A., Escalona de Motta, G., Hann, R. M., Lasalde, J. A., Prieto, J. A., and Ferchmin, P. A. (1989). Positive modulators of muscle acetylcholine receptor.J. Receptor Res. 9107–125.Google Scholar
  7. Ewald, D. A. (1976). Potentiation of postjunctional cholinergic sensitivity of rat diaphragm muscle by high-energy-phosphate adenine nucleotides.J. Membr. Biol. 2947–65.Google Scholar
  8. Gordon, J. L. (1986). Extracellular ATP: Effects, sources and fate.Biochem. J. 233309–319.Google Scholar
  9. Huganir, R. L., and Miles, K. (1989). Protein phosphorylation of nicotinic acetylcholine receptors.Crit. Rev. Biochem. Mol. Biol. 24183–215.Google Scholar
  10. Lotan, I., Dascal, N., Cohen, S., and Lass, Y. (1982). Adenosine-induced slow ionic currents in the Xenopus oocyte.Nature 298572–574.Google Scholar
  11. Lotan, I., Dascal, N., Cohen, S., and Lass, Y. (1986). ATP-evoked membrane responses in Xenopus oocytes.Pflugers Arch. 406158–162.Google Scholar
  12. Lu, Z., and Smith, D. O. (1989). ATP and adenosine modulate channel activity of the acetylcholine receptor at the neuromuscular junction.Soc. Neurosci. Abstr. 15(2):1300.Google Scholar
  13. Miledi, R., and Woodward, R. M. (1989). Effect of defolliculation on membrane current responses of Xenopus oocytes.J. Physiol. (London)416601–621.Google Scholar
  14. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M., and Numa, S. (1985). Location of functional regions of acetylcholine receptorα-subunit by site-directed mutagenesis.Nature 313364–369.Google Scholar
  15. Mosckovitz, R., Haring, R., Gershoni, J. M., Kloog, Y., and Sokolovsky, M. (1987). Localization of azidophencyclidine-binding site on the nicotinic acetylcholine receptorα-subunit.Biochem. Biophys. Res. Comm. 145810–816.Google Scholar
  16. Oswald, R. E., Bamberger, M. J., and McLaughlin, J. T. (1984). Mechanism of phencyclidine binding to the acetylcholine receptor from Torpedo electroplaque.Mol. Pharmacol. 25360–368.Google Scholar
  17. Papke, R. L., and Oswald, R. E. (1989). Mechanisms of noncompetitive inhibition of acetylcholineinduced single channel currents.J. Gen. Physiol. 93785–811.Google Scholar
  18. Pradier, L., Yee, A. S., and McNamee, M. G. (1989). Use of chemical modifications and site-directed mutagenesis to probe the functional role of thiol groups on the gamma subunit ofTorpedo californica acetylcholine receptor.Biochemistry 286562–6571.Google Scholar
  19. Saji, Y., Escalona de Motta, G., and del Castillo, J. (1975). Depolarization and potentiation of responses to acetylcholine elicited by ATP on frog muscle.Life Sci. 16945–954.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Vesna A. Eterović
    • 1
  • Lian Li
    • 2
  • Andrew Palma
    • 2
  • Mark G. McNamee
    • 2
  1. 1.Department of BiochemistryUniversidad Central del CaribeCayeyPuerto Rico
  2. 2.Department of Biochemistry and BiophysicsUniversity of California at DavisDavisUSA

Personalised recommendations