Skip to main content
Log in

Casein kinases I and II bound to pig brain microtubules

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Microtubules prepared from pig brain by two cycles of assembly-disassembly comprise cyclic nucleotide-independent protein kinase activity with phosvitin and troponin T as substrates.

  2. 2.

    Phosphocellulose chromatography resolved two phosvitin kinase activity peaks, one of which coincided with the troponin T kinase peak.

  3. 3.

    The activity peak corresponding to troponin T kinase was inhibited by heparin (I 50 = 0.06µg/ml), whereas the other phosvitin kinase peak was unaffected.

  4. 4.

    Both kinase fractions phosphorylated tubulin and microtubule-associated protein (MAP-2).

  5. 5.

    It is concluded that pig brain microtubules contain bound casein kinases I and II. The association may target the action of these kinases toward microtubular proteinsin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baggio, B., and Moret, V. (1971). Multiple forms of phosvitin kinase from rat liver cytosol.Biochim. Biophys. Acta 250346–350.

    Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72248–254.

    Google Scholar 

  • Burns, R. G., and Islam, K. (1984a). Phosphorylation of the microtubule-associated protein MAP 2 by GTP.Biochem. J. 224 623–627.

    Google Scholar 

  • Burns, R. G., and Islam, K. (1984b). Stoichiometry of microtubule-associated protein (MAP 2): Tubulin and the localization of the phosphorylation and cysteine residues along the MAP 2 primary sequence.Eur. J. Biochem. 141599–608.

    Google Scholar 

  • Carmichael, D. F., Geahlen, R. L., Allen, S. M., and Krebs, E. G. (1982). Type II regulatory subunit of cAMP-dependent protein kinase. Phosphorylation by casein kinase II at a site that is also phosphorylatedin vivo.J. Biol. Chem. 25710440–10445.

    Google Scholar 

  • Dobrovol'sky, A. B., Risnik, V. V., and Gusev, N. B. (1981). Properties of troponin T kinase: Possible relationship to casein kinase of G type.Biokhimiya 461006–1014.

    Google Scholar 

  • Eipper, B. A. (1974). Rat brain tubulin and protein kinase activity.J. Biol. Chem. 2491398–1406.

    Google Scholar 

  • Feige, J. J., Pirollet, F., Cochet, C., and Chambaz, E. M. (1980). Selective inhibition of a cyclic nucleotide-independent protein kinase (G-type casein kinase) by naturally occurring glycoaminoglycans.FEBS Lett. 121139–142.

    Google Scholar 

  • Friedrich, P. (1986).Supramolecular Enzyme Organization: Quaternary Structure and Beyond, 2nd ed., Akadémiai Kiadó, Budapest, and Pergamon, Oxford.

    Google Scholar 

  • Friedrich, P., and Hajdu, J. (1987). An overview of supramolecular enzyme organization.Biochem. Soc. Trans. 15973–977.

    Google Scholar 

  • Goldenring, J. R., Gonzales, B., McGuire, J. S., and DeLorenzo, R. J. (1983). Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins.J. Biol. Chem. 25812632–12640.

    Google Scholar 

  • Goldenring, J. R., Casanova, J. E., and DeLorenzo, R. J. (1984). Tubulin-associated calmodulin-dependent kinase: Evidence for an endogenous complex of tubulin with calcium-calmodulin-dependent kinase.J. Neurochem. 431669–1679.

    Google Scholar 

  • Goldenring, J. R., Vallano, M. L., and DeLorenzo, R. J. (1985). Phosphorylation of microtubule-associated protein 2 at distinct sites by calmodulin-dependent and cyclic AMP-dependent kinases.J. Neurochem. 45900–905.

    Google Scholar 

  • Gusev, N. B., Dobrovol'sky, A. B., and Severin, S. E. (1980). Isolation and some properties of troponin T kinase from rabbit skeletal muscle.Biochem. J. 189219–226.

    Google Scholar 

  • Hajdu, J., Dombrádi, V., Bot, G., and Friedrich, P. (1979). Structural changes in glycogen phosphorylase as revealed by cross-linking with bifunctional diimidates: Phosphorylaseb.Biochemistry 184037–4041.

    Google Scholar 

  • Hathaway, G. M., and Traugh, J. A. (1982). Casein kinases—Multipotential protein kinases.Curr. Top. Cell. Regul. 21101–127.

    Google Scholar 

  • Horwitz, S. B., Parness, J., Schiff, P. B., and Manfredi, J. J. (1982). Taxol: A new probe for studying the structure and function of microtubules.Cold Spring Harbor Symp. Quant. Biol. 46219–226.

    Google Scholar 

  • Jameson, L., Frey, T., Zeeberg, B., Dalldorf, F., and Caplow, M. (1980). Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins.Biochemistry 192472–2479.

    Google Scholar 

  • Joubert, F. A., and Cook, W. H. (1958). Separation and characterization of lipovitellin from hen egg yolk.Can. J. biochem. Physiol. 36389–398.

    Google Scholar 

  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227680–685.

    Google Scholar 

  • Lohmann, S. M., and Walter, U. (1984). Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases.Adv. Cyclic Nucleotide Res. 1863–117.

    Google Scholar 

  • Murthy, A. S. N., Bramblett, G. T., and Flavin, M. (1985). The sites at which brain microtubule-associated protein 2 is phosphorylated in vivo differ from those accessible to cAMP-dependent kinase in vitro.J. Biol. Chem. 2604364–4370.

    Google Scholar 

  • Pinna, L. A., Meggio, F., and Dediukina, M. M. (1981). Phosphorylation of troponin T by casein kinase TS.Biochem. Biophys. Res. Commun. 100449–454.

    Google Scholar 

  • Risnik, V. V., and Gusev, N. B. (1981). Phosphorylation of skeletal troponin T by rat liver nuclear protein kinases.Biochem. Int. 3131–137.

    Google Scholar 

  • Risnik, V. V., and Gusev, N. B. (1984). Some properties of the nucleotide-binding site of troponin T kinase-casein kinase type II from skeletal muscle.Biochim. Biophys. Acta 790108–116.

    Google Scholar 

  • Singh, T. J., Akatsuka, A., Juang, K.-P., Murthy, A. S. N., and Flavin, M. (1984). Cyclic nucleotide-and Ca2+-independent phosphorylation of tubulin and microtubule-associated protein-2 by glycogen synthase/casein kinase-1.Biochem. Biophys. Res. Commun. 12119–26.

    Google Scholar 

  • Sloboda, R. D., and Rosenbaum, J. L. (1982). Purification and assay of microtuble-associated proteins (MAPs).Methods Enzymol. 85409–416.

    Google Scholar 

  • Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P. (1975). Cyclic AmP-dependent endogeneous phosphorylation of a microtubule-associated protein.Proc. Natl. Acad. Sci. USA 72177–181.

    Google Scholar 

  • Soifer, D. (1975). Enzymatic activity in tubulin preparations: Cyclic AMP-dependent protein kinase activity of brain microtubule protein.J. Neurochem. 2421–33.

    Google Scholar 

  • Theurkauf, W. E., and Vallee, R. B. (1982). Molecular characterization of the cAMP-dependent protein kinase bound to microtubule-associated protein 2.J. Biol. Chem. 2573284–3290.

    Google Scholar 

  • Theurkauf, W. E., and Vallee, R. B. (1983). Extensive cAMP-dependent and cAMP-independent phosphorylation of microtubule-associated protein 2.J. Biol. Chem. 2587883–7886.

    Google Scholar 

  • Tsuyama, S., Bramblett, G. J., Juang, K.-P., and Flavin, M. (1986). Calcium/phospholipid-dependent kinase recognizes sites in microtubule-associated protein 2 which are phosphorylated in living brain and are not accessible to other kinases.J. Biol. Chem. 2614110–4116.

    Google Scholar 

  • Vallee, R. B., DiBartolomeis, M. J., and Theurkauf, W. E. (1981). A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2).J. Cell Biol. 90568–576.

    Google Scholar 

  • Villar-Palasi, C., and Kumon, A. (1981). Purification and properties of dog cardiac troponin T kinase.J. Biol. Chem. 2567409–7415.

    Google Scholar 

  • Williams, R. C., and Lee, J. C. (1982). Preparation of tubulin from brain.Methods Enzymol. 85376–385.

    Google Scholar 

  • Yamamoto, H., Fukunaga, K., Tanaka, E., and Miyamoto, E. (1983). Ca2+ - and calmodulin-dependent phosphorylation of microtubule-associated protein 2 andτ factor, and inhibition of microtubule assembly.J. Neurochem. 411119–1125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risnik, V.V., Ádám, G., Gusev, N.B. et al. Casein kinases I and II bound to pig brain microtubules. Cell Mol Neurobiol 8, 315–324 (1988). https://doi.org/10.1007/BF00711173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711173

Key words

Navigation