Advertisement

Cellular and Molecular Neurobiology

, Volume 8, Issue 3, pp 307–314 | Cite as

Strychnine decreases the voltage-dependent Ca2+ current of bothAplysia and frog ganglion neurons

  • Yasuo Oyama
  • Norio Akaike
  • David O. Carpenter
Article

Summary

  1. 1.

    The effects of strychnine on the voltage-dependent Ca2+ current (ICa) were studied in physically isolatedAplysia neurons and enzymatically dissociated frog sensory neurons of the dorsal root ganglion. Neurons were studied under the internal perfusion and the voltage clamp condition.

     
  2. 2.

    Strychnine decreased theICa with threshold concentrations for effect at 1 to 10µM. The depression ofICa increased with strychnine dose without effects on the current-voltage relation ofICa. The effects of low concentrations of strychnine were reversible, but recovery was incomplete at higher concentrations. The potency of strychnine was about 10 times less than that of diltiazem, an organic Ca2+ antagonist. At 100µM theICa ofAplysia neurons was reduced to about half of the control. This concentration of strychnine also reduced the peak amplitude ofICa of frog sensory neurons.

     
  3. 3.

    These results indicate that, in addition to its actions on transmitter responses and on Na+ and K+ currents, strychnine has effects onICa that have not previously been appreciated.

     

Key words

strychnine Aplysia neurons frog sensory neurons concentration clamp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, N., Ito, H., Nishi, K., and Oyama, Y. (1982). Further analysis of inhibitory effects of propranolol and local anesthetics on the calcium current inHelix neurones.Br. J. Pharmacol. 7637–43.Google Scholar
  2. Akaike, N., Inoue, M. and Krishtal, O. A. (1986). “Concentration clamp” study ofgamma-aminobutyric acid-induced chloride current kinetics in frog sensory neurones.J. Physiol. (Lond.)379171–185.Google Scholar
  3. Ascher, P. (1972). Inhibitory and excitatory effects of dopamine onAplysia neurones.J. Physiol. (Lond.)225173–209.Google Scholar
  4. Augustine, G. J., Charlton, M. P., and Smith, S. J. (1986). Calcium action in synaptic transmitter release.Annu. Rev. Neurosci. 10633–693.Google Scholar
  5. Blaustein, M. P. (1968). Barbiturates block sodium and potassium conductance increases in voltage-clamped lobster axon.J. Gen. Physiol. 51309–319.Google Scholar
  6. Blaustein, M. P., and Goldman, D. E. (1966). Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics.J. Gen. Physiol. 491043–1063.Google Scholar
  7. Byerly, L., and Hagiwara, S. (1982). Calcium currents in internally perfused nerve cell bodies ofLimnea stagnalis.J. Physiol. (Lond.)322503–528.Google Scholar
  8. Byerly, L., and Moody, J. W. (1984). Intracellular calcium ions and calcium currents in perfused neurones of the snail,Lynmae stagnalis.J. Physiol. (Lond.)352637–652.Google Scholar
  9. Carbone, E., and Lux, H. D. (1984). A low voltage-activated calcium conductance in embryonic chick sensory neurons.Biophys. J. 46413–418.Google Scholar
  10. Cote, I. L., and Wilson, W. A. (1980). Effects of barbiturates on inhibitory and excitatory responses to applied neurotransmitters inAplysia.J. Pharmacol. Exp. Ther. 214161–165.Google Scholar
  11. Curtis, D. R., and Johnston, G. A. R. (1974). Amino acid transmitters in the mammalian central nervous system.Ergeb. Physiol. 6997–188.Google Scholar
  12. Curtis, D. R., Duggan, A. W., and Johnson, G. A. R. (1971). The specificity of strychnine as a glycine antagonist in the mammalian spinal cord.Exp. Brain Res. 12547–565.Google Scholar
  13. Faber, D. S., and Klee, M. R. (1980). Strychnine interactions with acetylcholine, dopamine and serotonin receptors inAplysia neurons.Brain Res. 214161–165.Google Scholar
  14. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. (1987). The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors.Nature 328215–221.Google Scholar
  15. Groul, D., and Weinreich, D. (1979). Two pharmacologically distinct histamine receptors mediating membrane hyperpolarizations on identified neurons ofAplysia californica.Brain Res. 162281–301.Google Scholar
  16. Hattori, K., Akaike, N., Oomura, U., and Kuraoka, S. (1984). Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons.Am. J. Physiol. 246C259-C265.Google Scholar
  17. Ishizuka, S., Hattori, K., and Akaike, N. (1984). Separation of ionic currents in the somatic membrane of frog sensory neurons.J. Membr. Biol. 7819–28.Google Scholar
  18. Ito, H., and Nishi, K. (1982). Frequency-dependent depression of ganglionic transmission by propranolol and diltiazem in the superior cervical ganglion of guinea pig.Br. J. Pharmacol. 77359–362.Google Scholar
  19. Ito, H., and Sakanashi, M. (1985). Effects of dilitiazem on the TEA-induced plateau of nodose ganglion action potential.Arch. Int. Pharmacodyn. Ther. 27728–38.Google Scholar
  20. Kehoe, J. (1972). Three acetylcholine receptors inAplysia neurones.J. Physiol. (Lond.)225115–146.Google Scholar
  21. Kordas, M. (1970). The effect of procaine on neuromuscular transmission.J. Physiol. (Lond.)209689–699.Google Scholar
  22. Krishtal, O. A., Marchenko, O. A., and Shakhovalov, Y. A. (1983). Receptor for ATP in the membrane of mammalian sensory neurons.Neurosci. Lett. 3541–45.Google Scholar
  23. Lee, K. S., Akaide, N., and Brown, A. M. (1980). The suction pipette method for internal perfusion and voltage clamp of small excitable cells.J. Neurosci. Meth. 257–78.Google Scholar
  24. McCaman, R. E., and Ono, J. K. (1982).Aplysia cholinergic synapses: A model for central cholinergic function. InProgress in Cholinergic Biology: Model Cholinergic Synapses (Hanin, I., and Goldberg, A. M., Eds.), Raven Press, New York.Google Scholar
  25. Nishi, K., and Oyama, Y. (1983). Barbiturates increase the rate of voltage-dependent inactivation of the calcium current in snail neurones.Br. J. Pharmacol. 80761–765.Google Scholar
  26. Ono, J. K., and Salvaterra, P. M. (1981). Snakeα-toxin effects on cholinergic and noncholinergic responses ofAplysia californica neurones.Soc. Neurosci. 1259–270.Google Scholar
  27. Oyama, Y., Akaike, N., and Nishi, K. (1986). Persistent calcium inward current in internally perfused snail neuron.Cell. Mol. Neurobiol. 671–85.Google Scholar
  28. Shapiro, B. I., Wang, C. M., and Narahashi, T. (1974). Effects of strychnine on ionic conductances of squid axon membrane.J. Pharmacol. Exp. Ther. 18866–76.Google Scholar
  29. Slater, N. T., and Carpenter, D. O. (1984). A study of the cholinolytic actions of strychnine using the technique of concentration jump relaxation analysis.Cell. Mol. Neurobiol. 4263–271.Google Scholar
  30. Slater, N. T., Carpenter, D. O., Haas, H. L., and David, J. A. (1984). Blocking kinetics at excitatory acetylcholine responses onAplysia neurons.Biophys. J. 4524–25.Google Scholar
  31. Steinbach, A. B. (1968). Alteration by Xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential.J. Gen. Physiol. 52144–161.Google Scholar
  32. Taylor, R. E. (1959). Effect of procaine on the electrical properties of squid axon membrane.Am. J. Physiol. 1961071–1078.Google Scholar
  33. Yarowsky, P. J., and Carpenter, D. O. (1978). A comparison of similar ionic responses togamma-aminobutyric acid and acetylcholine.J. Neurophysiol. 41531–541.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Yasuo Oyama
    • 1
  • Norio Akaike
    • 2
  • David O. Carpenter
    • 1
  1. 1.Wadsworth Center for Laboratories and Research and School of Public Health SciencesNew York State Department of HealthAlbanyUSA
  2. 2.Department of PhysiologyFaculty of Medicine, Kyushu UniversityFukuokaJapan

Personalised recommendations