Skip to main content
Log in

Strychnine decreases the voltage-dependent Ca2+ current of bothAplysia and frog ganglion neurons

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    The effects of strychnine on the voltage-dependent Ca2+ current (I Ca) were studied in physically isolatedAplysia neurons and enzymatically dissociated frog sensory neurons of the dorsal root ganglion. Neurons were studied under the internal perfusion and the voltage clamp condition.

  2. 2.

    Strychnine decreased theI Ca with threshold concentrations for effect at 1 to 10µM. The depression ofI Ca increased with strychnine dose without effects on the current-voltage relation ofI Ca. The effects of low concentrations of strychnine were reversible, but recovery was incomplete at higher concentrations. The potency of strychnine was about 10 times less than that of diltiazem, an organic Ca2+ antagonist. At 100µM theI Ca ofAplysia neurons was reduced to about half of the control. This concentration of strychnine also reduced the peak amplitude ofI Ca of frog sensory neurons.

  3. 3.

    These results indicate that, in addition to its actions on transmitter responses and on Na+ and K+ currents, strychnine has effects onI Ca that have not previously been appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akaike, N., Ito, H., Nishi, K., and Oyama, Y. (1982). Further analysis of inhibitory effects of propranolol and local anesthetics on the calcium current inHelix neurones.Br. J. Pharmacol. 7637–43.

    Google Scholar 

  • Akaike, N., Inoue, M. and Krishtal, O. A. (1986). “Concentration clamp” study ofgamma-aminobutyric acid-induced chloride current kinetics in frog sensory neurones.J. Physiol. (Lond.)379171–185.

    Google Scholar 

  • Ascher, P. (1972). Inhibitory and excitatory effects of dopamine onAplysia neurones.J. Physiol. (Lond.)225173–209.

    Google Scholar 

  • Augustine, G. J., Charlton, M. P., and Smith, S. J. (1986). Calcium action in synaptic transmitter release.Annu. Rev. Neurosci. 10633–693.

    Google Scholar 

  • Blaustein, M. P. (1968). Barbiturates block sodium and potassium conductance increases in voltage-clamped lobster axon.J. Gen. Physiol. 51309–319.

    Google Scholar 

  • Blaustein, M. P., and Goldman, D. E. (1966). Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics.J. Gen. Physiol. 491043–1063.

    Google Scholar 

  • Byerly, L., and Hagiwara, S. (1982). Calcium currents in internally perfused nerve cell bodies ofLimnea stagnalis.J. Physiol. (Lond.)322503–528.

    Google Scholar 

  • Byerly, L., and Moody, J. W. (1984). Intracellular calcium ions and calcium currents in perfused neurones of the snail,Lynmae stagnalis.J. Physiol. (Lond.)352637–652.

    Google Scholar 

  • Carbone, E., and Lux, H. D. (1984). A low voltage-activated calcium conductance in embryonic chick sensory neurons.Biophys. J. 46413–418.

    Google Scholar 

  • Cote, I. L., and Wilson, W. A. (1980). Effects of barbiturates on inhibitory and excitatory responses to applied neurotransmitters inAplysia.J. Pharmacol. Exp. Ther. 214161–165.

    Google Scholar 

  • Curtis, D. R., and Johnston, G. A. R. (1974). Amino acid transmitters in the mammalian central nervous system.Ergeb. Physiol. 6997–188.

    Google Scholar 

  • Curtis, D. R., Duggan, A. W., and Johnson, G. A. R. (1971). The specificity of strychnine as a glycine antagonist in the mammalian spinal cord.Exp. Brain Res. 12547–565.

    Google Scholar 

  • Faber, D. S., and Klee, M. R. (1980). Strychnine interactions with acetylcholine, dopamine and serotonin receptors inAplysia neurons.Brain Res. 214161–165.

    Google Scholar 

  • Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., and Betz, H. (1987). The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors.Nature 328215–221.

    Google Scholar 

  • Groul, D., and Weinreich, D. (1979). Two pharmacologically distinct histamine receptors mediating membrane hyperpolarizations on identified neurons ofAplysia californica.Brain Res. 162281–301.

    Google Scholar 

  • Hattori, K., Akaike, N., Oomura, U., and Kuraoka, S. (1984). Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons.Am. J. Physiol. 246C259-C265.

    Google Scholar 

  • Ishizuka, S., Hattori, K., and Akaike, N. (1984). Separation of ionic currents in the somatic membrane of frog sensory neurons.J. Membr. Biol. 7819–28.

    Google Scholar 

  • Ito, H., and Nishi, K. (1982). Frequency-dependent depression of ganglionic transmission by propranolol and diltiazem in the superior cervical ganglion of guinea pig.Br. J. Pharmacol. 77359–362.

    Google Scholar 

  • Ito, H., and Sakanashi, M. (1985). Effects of dilitiazem on the TEA-induced plateau of nodose ganglion action potential.Arch. Int. Pharmacodyn. Ther. 27728–38.

    Google Scholar 

  • Kehoe, J. (1972). Three acetylcholine receptors inAplysia neurones.J. Physiol. (Lond.)225115–146.

    Google Scholar 

  • Kordas, M. (1970). The effect of procaine on neuromuscular transmission.J. Physiol. (Lond.)209689–699.

    Google Scholar 

  • Krishtal, O. A., Marchenko, O. A., and Shakhovalov, Y. A. (1983). Receptor for ATP in the membrane of mammalian sensory neurons.Neurosci. Lett. 3541–45.

    Google Scholar 

  • Lee, K. S., Akaide, N., and Brown, A. M. (1980). The suction pipette method for internal perfusion and voltage clamp of small excitable cells.J. Neurosci. Meth. 257–78.

    Google Scholar 

  • McCaman, R. E., and Ono, J. K. (1982).Aplysia cholinergic synapses: A model for central cholinergic function. InProgress in Cholinergic Biology: Model Cholinergic Synapses (Hanin, I., and Goldberg, A. M., Eds.), Raven Press, New York.

    Google Scholar 

  • Nishi, K., and Oyama, Y. (1983). Barbiturates increase the rate of voltage-dependent inactivation of the calcium current in snail neurones.Br. J. Pharmacol. 80761–765.

    Google Scholar 

  • Ono, J. K., and Salvaterra, P. M. (1981). Snakeα-toxin effects on cholinergic and noncholinergic responses ofAplysia californica neurones.Soc. Neurosci. 1259–270.

    Google Scholar 

  • Oyama, Y., Akaike, N., and Nishi, K. (1986). Persistent calcium inward current in internally perfused snail neuron.Cell. Mol. Neurobiol. 671–85.

    Google Scholar 

  • Shapiro, B. I., Wang, C. M., and Narahashi, T. (1974). Effects of strychnine on ionic conductances of squid axon membrane.J. Pharmacol. Exp. Ther. 18866–76.

    Google Scholar 

  • Slater, N. T., and Carpenter, D. O. (1984). A study of the cholinolytic actions of strychnine using the technique of concentration jump relaxation analysis.Cell. Mol. Neurobiol. 4263–271.

    Google Scholar 

  • Slater, N. T., Carpenter, D. O., Haas, H. L., and David, J. A. (1984). Blocking kinetics at excitatory acetylcholine responses onAplysia neurons.Biophys. J. 4524–25.

    Google Scholar 

  • Steinbach, A. B. (1968). Alteration by Xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential.J. Gen. Physiol. 52144–161.

    Google Scholar 

  • Taylor, R. E. (1959). Effect of procaine on the electrical properties of squid axon membrane.Am. J. Physiol. 1961071–1078.

    Google Scholar 

  • Yarowsky, P. J., and Carpenter, D. O. (1978). A comparison of similar ionic responses togamma-aminobutyric acid and acetylcholine.J. Neurophysiol. 41531–541.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oyama, Y., Akaike, N. & Carpenter, D.O. Strychnine decreases the voltage-dependent Ca2+ current of bothAplysia and frog ganglion neurons. Cell Mol Neurobiol 8, 307–314 (1988). https://doi.org/10.1007/BF00711172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711172

Key words

Navigation