Advertisement

Cellular and Molecular Neurobiology

, Volume 2, Issue 3, pp 241–247 | Cite as

Activity and immunocytochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in primary nerve cell cultures from rat brain

  • Hans Werner Müller
  • Wilfried Seifert
Short Communication

Summary

  1. 1.

    In the present investigation we demonstrate the occurrence and immunocytochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; EC 3.1.4.37) in primary nerve cell cultures from rat brain.

     
  2. 2.

    Using a specific antiserum to purified CNPase the enzyme has been detected by immunofluorescence staining on the cell surface as well as within the cell body and processes of oligodendrocytes.

     
  3. 3.

    Substantial amounts of CNPase activity are expressed in these cells prior to the onset of myelin formation.

     
  4. 4.

    The enzyme activity rapidly increases severalfold in culture during developmental stages corresponding to the period around birth.

     
  5. 5.

    In contrast to neuronal tumor cell lines [Müller, H. W.,et al. (1981).J. Neurochem.37:947–955; Müller, H. W., and Seifert, W. (1982).Cell. Mol. Neurobiol.2:227–239], primary neurons from rat brain do not synthesize the enzyme.

     

Key words

2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) anti-CNPase antibody central nervous system primary nerve cell culture oligodendrocyte immunofluorescence labeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrarwal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M. (1970). The identity of a myelin-like fraction isolated from developing brain.Biochem. J. 120635–642.Google Scholar
  2. Bhat, S., Barbarese, E., and Pfeiffer, S. E. (1981). Requirement for nonoligodendrocyte cell signals for enhanced myelinogenic gene expression in long-term cultures of purified rat oligodendrocytes.Proc. Natl. Acad. Sci. USA 781283–1287.Google Scholar
  3. Bignami, A., Eng, L. F., Dahl, D., and Uyeda, C. T. (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence.Brain Res. 43429–435.Google Scholar
  4. Bottenstein, J. E., and Sato, G. H. (1979). Growth of a rat neuroblastoma cell line in serum-free supplemented medium.Proc. Natl. Acad. Sci. USA 76514–517.Google Scholar
  5. Cohen, J., and Selvendran, S. Y. (1981). A neuronal cell surface antigen is found in the CNS but not in peripheral neurons.Nature 291421–423.Google Scholar
  6. Drummond, G. I., Iyer, N. T., and Keith, J. (1962). Hydrolysis of ribonucleotide 2′,3′-cyclic phosphates by a diesterase from brain.J. Biol. Chem. 2373535–3539.Google Scholar
  7. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M. (1979). Monoclonal antibody to a plasma membrane antigen on neurons.Proc. Natl. Acad. Sci. USA 764913–4917.Google Scholar
  8. Kurihara, T., and Tsukada, Y. (1967). The regional and subcellular distribution of 2′,3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system.J. Neurochem. 141167–1174.Google Scholar
  9. Kurihara, T., and Tsukada, Y. (1968). 2′,3′-Cyclic nucleotide 3′-phosphohydrolase in the developing chick brain and spinal cord.J. Neurochem. 15827–832.Google Scholar
  10. McCarthy, K. D., and DeVellis, J. (1980). Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue.J. Cell Biol. 85890–902.Google Scholar
  11. Müller, H. W., and Seifert, W. (1982a). 2′,3′-Cyclic nucleotide 3′-phosphodiesterase (CNPase) activity in cultured nerve cell lines from central nervous system: Comparison of proliferating and resting growth states and cell cycle-dependent activity changes.Cell. Mol. Neurobiol. 2227–239.Google Scholar
  12. Müller, H. W., and Seifert, W. (1982b). A neurotrophic factor released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons.J. Neurosci. Res. (in press).Google Scholar
  13. Müller, H. W., Clapshaw, P. A., and Seifert, W. (1981a). Characterization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase: Limited proteolytic digestion, plant lectin affinity chromatography and immunological identification.J. Neurochem. 362004–2012.Google Scholar
  14. Müller, H. W., Clapshaw, P. A., and Seifert, W. (1981b). Intracellular localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in a neuronal cell line as examined by immunofluorescence and cell fractionation.J. Neurochem. 37947–955.Google Scholar
  15. Nishizawa, Y., Kurihara, T., and Takahashi, Y. (1981). Immunohistochemical localization of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in the central nervous system.Brain Res. 212219–222.Google Scholar
  16. Poduslo, S. E. (1975). The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain.J. Neurochem. 24647–654.Google Scholar
  17. Ranscht, B., Clapshaw, P. A., and Seifert, W. (1980). A monoclonal antibody against oligodendrocytes.Hoppe-Seyler Z. Physiol. Chem. 3611327.Google Scholar
  18. Ranscht, B., Clapshaw, P. A., Price, J., Noble, M., and Seifert, W. (1982). The development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside.Proc. Natl. Acad. Sci. USA 792709–2713.Google Scholar
  19. Seifert, W., Ranscht, B., Fink, H. J., Müller, H. W., and Förster, F. (1981). The developing hippocampus in cell culture.Abstr. Soc. Neurosci. 249.18.Google Scholar
  20. Shapira, R., Morley, W. C., Thiele, S. B., Wilhelmi, M. R., Wallace, A., and Kibler, R. F. (1978). Localization of 2′,3′-cyclic nucleotide 3′-phosphohydrolase of rabbit brain by sedimentation in a continuous sucrose gradient.J. Neurochem. 30735–744.Google Scholar
  21. Sogin, D. D. (1976). 2′,3′-Cyclic NADP as a substrate for 2′,3′-cyclic nucleotide 3′-phosphohydrolase.J. Neurochem. 271333–1337.Google Scholar
  22. Sprinkle, T. J., Zaruba, M. E., and McKhann, G. M. (1978). Activity of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in regions of rat brain during development: Quantitative relationship to myelin basic protein.J. Neurochem. 30309–314.Google Scholar
  23. Toews, A. D., Horrocks, L. A., and King, Y. S. (1976). Simultaneous isolation of purified microsomal and myelin fractions from rat spinal cord.J. Neurochem. 2725–31.Google Scholar
  24. Waehneldt, T. V. (1975). Ontogenetic study of a myelin-derived fraction with 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity higher than that of myelin.Biochem. J. 151435–437.Google Scholar
  25. Waehneldt, T. V., Matthieu, J. -M., and Neuhoff, V. (1977). Characterization of a myelin-related fraction (SN4) isolated from rat forebrain at two developmental stages.Brain Res. 13829–43.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Hans Werner Müller
    • 1
  • Wilfried Seifert
    • 1
  1. 1.Friedrich-Miescher-Laboratory, Molecular Neurobiology GroupMax-Planck-InstituteTübingenWest Germany

Personalised recommendations