Cellular and Molecular Neurobiology

, Volume 6, Issue 3, pp 281–291 | Cite as

Interactions of antinicotinic acetylcholine receptor antibodies with rat brain and muscle antigenic determinants

  • Ronald J. Lukas


  1. 1.

    Studies were performed to determine whether antibodies prepared against nicotinic acetylcholine receptors (nAcChoR) from electric tissue are reactive toward nAcChoR-like antigenic determinants in rat brain.

  2. 2.

    Reference experiments involved the use ofTorpedo electroplax and rat innervated muscle as tissue controls and an anti-α-bungarotoxin antiserum as a probe for curaremimetic neurotoxin binding sites.

  3. 3.

    As evinced by their ability to inhibit immunoprecipitation ofTorpedo nAcChoR, brain or muscle membranes specifically interact with polyclonal antisera raised againstElectrophorus electroplax nAcChoR.

  4. 4.

    When the extent of polyclonal anti-nAcChoR antibody binding to muscle membranes is measured by protein A binding protocols, receptor-like antigenic determinants and toxin binding sites are found to be present in approximately equal quantities.

  5. 5.

    In contrast, nAcChoR-like antigenic determinants on rat brain membranes are present at concentrations in excess of those of toxin binding sites.

  6. 6.

    The results are consistent with the earlier observation that some antibodies prepared against nAcChoR from peripheral tissues recognize rat brain high-affinityα-bungarotoxin binding sites.

  7. 7.

    The results also suggest the existence of nAcChoR-like entities in brain that do not bind toxin with a high affinity.


Key words

acetylcholine acetylcholine receptor nicotinic receptor α-bungarotoxin antireceptor antibodies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abood, L. G., Lowy, K., Tometsko, A., and Booth, H. (1978). Electrophysiological, behavioral, and chemical evidence for a noncholinergic, stereospecific site for nicotine in rat brain.J. Neurosci. Res. 3 327–333.Google Scholar
  2. Block, G. A., and Billar, R. B. (1979). Immunological similarities between the hypothalamic alphabungarotoxin receptor and theTorpedo californica nicotinic cholinergic receptor.Brain Res. 178381–387.Google Scholar
  3. Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B., and Pert, A. (1985). Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]-alpha-bungarotoxin.J. Neurosci. 51307–1315.Google Scholar
  4. Fontana, A., Fulpius, B. W., and Cuenoud, S. (1978). Antikorper gegen nicotinartige acetylcholinerezeptoren des zentral nervensystems und der muskulatur bei epileptikern mit IgA-mangel.Schweiz. Med. Wschr. 1181307–1310.Google Scholar
  5. Fontana, A., Fulpius, B. W., and Cuenoud, S. (1979). Antibodies against muscle and brain nicotinic acetylcholine receptors in IgA deficient patients with epilepsy. InAdvances in Cytopharmacology, Vol. 3 (Ceccarelli, B., and Clementi, F., Eds.), Raven Press, New York, pp. 287–292.Google Scholar
  6. Froehner, S. C. (1981). Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor fromTorpedo californica.Biochemistry 204905–4915.Google Scholar
  7. Fulpius, B. W., Fontana, A., and Cuenoud, S. (1979). Central nervous system involvement in experimental autoimmune myasthenia gravis.Lancet 2350–351.Google Scholar
  8. Gomez, C. D., Richman, D. P., Berman, P., Burres, S., Arnason, B. G., and Fitch, F. W. (1979). Monoclonal antibodies against purified nicotinic acetylcholine receptor.Biochem. Biophys. Res. Commun. 88575–582.Google Scholar
  9. Lukas, R. J. (1983). Nicotinic acetylcholine receptor-like antigenic determinants and alpha-bungarotoxin binding sites in rat brain.Soc. Neurosci. Abstr. 9:962.Google Scholar
  10. Lukas, R. J. (1984a). Properties of curaremimetic neurotoxin binding sites in the rat central nervous system.Biochemistry 231152–1160.Google Scholar
  11. Lukas, R. J. (1984b). Detection of low affinity alpha-bungarotoxin binding sites in the rat central nervous system.Biochemistry 231160–1164.Google Scholar
  12. Lukas, R. J. (1986a). Immunochemical and pharmacological distinctions between curaremimetic neurotoxin binding sites of central, autonomic, and peripheral origin.Proc. Natl. Acad. Sci. USA 83:5741–5745.Google Scholar
  13. Lukas, R. J. (1986b). Interactions of polyclonal anti-Electrophorus nicotinic receptor antisera withTorpedo nicotinic receptor.Int. J. Biochem. (in press).Google Scholar
  14. Lukas, R. J. (1986c). Interactions of anti-nicotinic acetylcholine receptor antibodies atα-bungarotoxin binding sites across species and tissues.Molec. Brain. Res. (in press).Google Scholar
  15. Marks, M. J., and Collins, A. C. (1982). Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benziliate.Mol. Pharmacol. 22554–564.Google Scholar
  16. Mochly-Rosen, D., and Fuchs, S. (1981). Monoclonal anti-acetylcholine-receptor antibodies directed against the cholinergic binding site.Biochemistry 205920–5924.Google Scholar
  17. Morley, B. J., Dwyer, D. S., Strang-Brown, P. F., Bradley, R. J., and Kemp, G. E. (1983). Evidence that certain peripheral anti-acetylcholine receptor antibodies do not interact with brain BuTX binding sites.Brain Res. 262109–116.Google Scholar
  18. Papazian, O. (1976). Rapid eye movement sleep alterations in myasthenia gravis.Neurology 26311–316.Google Scholar
  19. Patrick, J., and Lindstrom, J. (1973). Autoimmune response to acetylcholine receptor.Science 180871–872.Google Scholar
  20. Patrick, J., Lindstrom, J., Culp, B., and McMillan, J. (1973). Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody.Proc. Natl. Acad. Sci. USA 703334–3338.Google Scholar
  21. Romano, C., and Goldstein, A. (1980). Stereospecific nicotinic receptors on rat brain membranes.Science 210647–649.Google Scholar
  22. Schmidt, J., Hunt, S. P., and Polz-Tejera, G. (1980). Nicotinic receptors of the central and autonomic nervous system. InNeurotransmitters, Receptors and Drug Action (Essman, W. B., Ed.), Spectrum, New York, p. 1.Google Scholar
  23. Schwartz, M., Axelrod, D., Feldman, E. L., and Agranoff, B. W. (1980). Histological localization of binding sites of alpha-bungarotoxin and of antibodies specific to acetylcholine receptor in goldfish optic nerve and tectum.Brain Res. 194171–180.Google Scholar
  24. Schwartz, R. D., McGee, R., Jr., and Kellar, K. J. (1982). Nicotinic cholinergic receptors labeled by [3H] acetylcholine in rat brain.Mol. Pharmacol. 2256–62.Google Scholar
  25. Swanson, L. W., Lindstrom, J., Tzartos, S., Schmued, L. C., O'Leary, D. D. M., and Cowan, W. M. (1983). Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.Proc. Natl. Acad. Sci. USA 804532–4536.Google Scholar
  26. Tarrab-Hazdai, R., and Edery, H. (1980). Adipsia and aphagia elicited by intracerebroventricular injections of anti-acetylcholine receptor antibodies.Exp. Neurol. 67670–675.Google Scholar
  27. Wonnacott, S., Harrison, R., and Lunt, G. G. (1982). Immunological crossreactivity between the alphabungarotoxin binding component from rat brain and nicotinic acetylcholine receptor.J. Neuroimmunol. 31–13.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Ronald J. Lukas
    • 1
  1. 1.Division of NeurobiologyBarrow Neurological InstitutePhoenixUSA

Personalised recommendations