Skip to main content

Adaptive plasticity in the spinal stretch reflex: An accessible substrate of memory?

Summary

  1. 1.

    The study of the substrates of memory in higher vertebrates is one of the major problems of neurobiology. A simple and technically accessible experimental model is needed.

  2. 2.

    Recent studies have demonstrated long-term adaptive plasticity, a form of memory, in the spinal stretch reflex (SSR). The SSR is due largely to a two-neuron monosynaptic arc, the simplest, best-defined, and most accessible pathway in the primate central nervous system (CNS).

  3. 3.

    Monkeys can slowly change SSR amplitude without a change in initial muscle length or alpha motoneuron tone, when reward is made contingent on amplitude. Change occurs over weeks and months and persists for long periods. It is relatively specific to the agonist muscle and affects movement.

  4. 4.

    The salient features of SSR adaptive plasticity, combined with clinical and laboratory evidence indicating spinal cord capacity for intrinsic change, suggest that SSR change eventually involves persistent segmental alteration. If this is the case, SSR plasticity should be a powerful model for studying the neuronal and synaptic substrates of memory in a primate.

This is a preview of subscription content, access via your institution.

References

  1. Alkon, D. L. (1974). Associative training of Hermissenda.J. Gen. Physiol. 6470–84.

    Google Scholar 

  2. Ashby, P., Verrier, M., Carleton, S., and Somerville, J. (1980). Vibratory inhibition of the monosynaptic reflex and presynaptic inhibition in man. InSpasticity: Disordered Motor Control (Feldman, R. G., Young, R. R., and Koella, W. P., Eds.), Year Book, Chicago, pp. 335–344.

    Google Scholar 

  3. Baldissera, F., Hultborn, H., and Illert, M. (1981). Integration in spinal neuronal systems. InHandbook of Physiology. Sect. I. The Nervous System. Vol. II. Motor Control. Part I (Brooks, V. B., Ed.), Williams and Wilkins, Baltimore, pp. 509–595.

    Google Scholar 

  4. Barker, D., and Saito, M. (1981). Autonomic innervation of receptors and muscle fibers in cat skeletal muscle.Proc. R. Soc. Lond. B 212317–332.

    Google Scholar 

  5. Basmajian, J. V. (1978).Muscles Alive, Williams and Wilkins, Baltimore, pp. 32–36.

    Google Scholar 

  6. Bliss, T. V. P., and Gardner-Medwin, A. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanesthetized rabbit following stimulation of the perforant path.J. Physiol. (Lond.)232331–356.

    Google Scholar 

  7. Bliss, T. V. P., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path.J. Physiol. (Lond.)232357–374.

    Google Scholar 

  8. Brown, A. G. (1981).Organization in the Spinal Cord, Springer Verlag, Berlin.

    Google Scholar 

  9. Brown-Sequard, C. E. (1879). Recherches experimentales sur une nouvelle propriete du system nerveux.C.R. Hebd. Seances Acad. Sci. 89889–913.

    Google Scholar 

  10. Burke, D. (1980). A reassessment of the muscle spindle contribution to muscle tone in normal and spastic man. InSpasticity: Disordered Motor Control (Feldman, R. G., Young, R. R., and Koella, W. P., Eds.), Year Book, Chicago, pp. 261–286.

    Google Scholar 

  11. Burke, D., Gandevia, S. C., and McKeon, B. (1984). Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex.J. Neurophysiol. 52435–448.

    Google Scholar 

  12. Burke, R. E. (1981). Motor units: Anatomy, physiology, and functional organization. InHandbook of Physiology. Sect. I. The Nervous System. Vol. II. Motor Control. Part I (Brooks, V. B., Ed.), Williams and Wilkins, Baltimore, pp. 345–422.

    Google Scholar 

  13. Burke, R. E., and Rudomin, P. (1978). Spinal neurons and synapses. InHandbook of Physiology. The Nervous System. Cellular Biology of Neurons (Kandel, E. R., Ed.), Williams and Wilkins, Baltimore, pp. 877–944.

    Google Scholar 

  14. Bussel, B., Morin, C., and Pierrot-Deseilligny, E. (1978). Mechanism of monosynaptic reflex reinforcement during Jendrassik maneuver in man.J. Neurol. Neurosurg. Psychiat. 4140–44.

    Google Scholar 

  15. Carew, T. J., Walters, E. T., and Kandel, E. R. (1981). Classical conditioning in a simple withdrawal reflex in Aplysia californica.J. Neurosci. 11426–1437.

    Google Scholar 

  16. Cohen, D. H. (1969). Development of a vertebrate experimental model for cellular neurophysiologic studies of learning.Cond. Reflex. 461–80.

    Google Scholar 

  17. Cohen, D. H. (1982). Central processing time for a conditioned response in a vertebrate model system. InConditioning: Representation of Involved Neural Functions (Woody, C. D., Ed.), Plenum, New York, pp. 517–534.

    Google Scholar 

  18. Cooke, J. D., and Eastman, M. J. (1977). Long loop reflexes in the tranquilized monkey.Exp. Brain Res. 27491–500.

    Google Scholar 

  19. Crago, P. E., Houk, J. C., and Hasan, Z. (1976). Regulatory actions of human stretch reflex.J. Neurophysiol. 39925–935.

    Google Scholar 

  20. Crow, T. (1983). Conditioned modification of locomotion in Hermissenda crassicornis: Analysis of time-dependent associative and non-associative components.J. Neurosci. 32621–2628.

    Google Scholar 

  21. DiGiorgio, A. M. (1929). Persistenza nell'animale spinale, di asymmetrie posturali e motorie di origine cerebellare.Arch. Fisiol. 27519–542.

    Google Scholar 

  22. Dittmer, D. S. (Ed.) (1961).Biological Handbook: Blood and Other Body Fluids, Fed. Am. Soc. Exp. Biol., Washington, D.C., pp. 388–389.

    Google Scholar 

  23. Eldred, E., Schnitzlain, H., and Buchwald, J. (1960). Response of muscle spindles to stimulation of sympathetic truck.Exp. Neurol. 213–25.

    Google Scholar 

  24. Evarts, E. V., and Granit, R. (1976). Relations of reflexes and intended movements.Prog. Brain Res. 441–14.

    Google Scholar 

  25. Evarts, E. V., and Tanji, J. (1974). Gating of motor cortex reflexes by prior instruction.Brain Res. 71479–494.

    Google Scholar 

  26. Gerard, R. W. (1961). The fixation of experience. InBrain Mechanisms and Learning (Gerard, R. W., and Konorski, J., Eds.), Blackwell, Oxford, pp. 21–32.

    Google Scholar 

  27. Gonshor, A., and Melvill Jones, G. (1971). Plasticity in the adult human vestibulo-ocular reflex arc.Proc. Can. Fed. Biol. Soc. 1411.

    Google Scholar 

  28. Goode, D. J. (1982). Loss of patellar and Achilles tendon reflexes in classical ballet dancers.Arch. Neurol. 39323.

    Google Scholar 

  29. Gormezano, I., Schniederman, N., Deaux, E., and Fuentes, I. (1962). Nictitating membrane: Classical conditioning and extinction in the albino rabbit.Science 13833–34.

    Google Scholar 

  30. Gottlieb, G. L., and Agarwal, G. C. (1979). Responses to sudden torques about ankle in man: Myotatic reflex.J. Neurophysiol. 4291–106.

    Google Scholar 

  31. Hagbarth, K.- E. (1967). EMG studies of stretch reflexes in man.Electroencephalogr. Clin. Neurophysiol. Suppl. 2574–79.

    Google Scholar 

  32. Hammond, P. H. (1956). The influence of prior instruction to the subject on an apparently involuntary neuromuscular response.J. Physiol. 13217P-18P.

    Google Scholar 

  33. Harris, D. A., and Henneman, E. (1980). Feedback signals from muscle and their efferent control. InMedical Physiology, Vol. 1 (Mountcastle, V. B., Ed.), Mosby, St. Louis, pp. 703–717.

    Google Scholar 

  34. Henneman, E., and Mendell, L. M. (1981). Functional organization of motoneuron pool and inputs. InHandbook of Physiology. Sect. I. The Nervous System. Vol. II. Motor Control. Part I (Brooks, V. B., Ed.), Williams and Wilkins, Baltimore, pp. 423–507.

    Google Scholar 

  35. Hill, W. C. O. (1974).Primates. Vol. VII. Cynopithecinae, Wiley, New York, pp. 551–552, 626-627, 672-673, et passim.

    Google Scholar 

  36. Horowitz, B. (1981). Neuronal plasticity: How changes in dendritic architecture can affect spread of postsynaptic potentials.Brain Res. 224412–418.

    Google Scholar 

  37. Houk, J. C., and Rymer, W. Z. (1981). Neural control of muscle length and tension. InHandbook of Physiology. Sect. I. The Nervous System. Vol. II. Motor Control. Part I (Brooks, V. B., Ed.), Williams and Wilkins, Baltimore, pp. 257–323.

    Google Scholar 

  38. Hunt, C. (1960). The effect of sympathetic stimulation on mammalian muscle spindles.J. Physiol. (Lond.)151332–341.

    Google Scholar 

  39. Iles, J. F. (1977). Responses in human pretibial muscles to sudden stretch and nerve stimulation.Exp. Brain Res. 30451–470.

    Google Scholar 

  40. Ito, M. (1982). Cerebellar control of the vestibulo-ocular reflex: Around the flocculus hypothesis.Annu. Rev. Neurosci. 5275–296.

    Google Scholar 

  41. Jendrassik, E. (1883). Beitrage zur lehre von den sehnenreflexen.Deut. Arch. Klin. Med. 33177–199.

    Google Scholar 

  42. Kandel, E. R., and Schwartz, J. H. (1982). Molecular biology of learning: Modulation of transmitter release.Science 218433–443.

    Google Scholar 

  43. Kandel, E. R., and Spencer, W. A. (1968). Cellular neurophysiological approaches in the study of learning.Physiol. Rev. 4865–134.

    Google Scholar 

  44. Lee, R. G., and Tatton, W. G. (1975). Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders.Can. J. Neurol. Sci. 2285–293.

    Google Scholar 

  45. Lloyd, D. P. C. (1949). Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord.J. Gen. Physiol. 33147–170.

    Google Scholar 

  46. Lundberg, A. (1967). The supraspinal control of transmission in spinal reflex pathways.Electroencephalogr. Clin. Neurophysiol. 2535–46.

    Google Scholar 

  47. Lynch, G., and Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis.Science 2241057–1063.

    Google Scholar 

  48. Mandl, G., Melvill Jones, G., and Cynader, M. (1981). Adaptability of the vestibulo-ocular reflex to vision reversal in strobe reared cats.Brain Res. 20935–45.

    Google Scholar 

  49. Manni, E. (1950). Localizzazoni cerebellari corticali nella cavia. Nota 1: Il “corpus cerebelli.”Arch. Fisiol. 49213–237.

    Google Scholar 

  50. Matthews, P. B. C. (1972).Mammalian Muscle Receptors and Their Central Actions, Williams and Wilkins, Baltimore, pp. 319–409 et passim.

    Google Scholar 

  51. Matthews, P. B. C. (1981). Muscle spindles: Their messages and their fusimotor supply. InHandbook of Physiology, Sect. II. The Nervous System. Vol. II. Motor Control. Part I (Brooks, V. B., Ed.), Williams and Wilkins, Baltimore, pp. 43–106.

    Google Scholar 

  52. McGough, G. P. (1924). The relation of the pyramidal tract to spinal shock.Am. J. Physiol. 71137–152.

    Google Scholar 

  53. Mendell, L. M. (1984). Modifiability of spinal synapses.Physiol. Rev. 64260–324.

    Google Scholar 

  54. Miles, F. A., and Lisberger, S. C. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis.Annu. Rev. Neurosci. 4273–299.

    Google Scholar 

  55. Mountcastle, V. B. (1980). Effects of spinal cord transection. InMedical Physiology, Vol. 1 (Mountcastle, V. B., Ed.), Mosby, St. Louis, pp. 781–786.

    Google Scholar 

  56. Myklebust, B. (1983). Development of stretch reflexes. Am. Acad. Cerebr. Palsy Dev. Med. Annu. Mtg., Chicago.

    Google Scholar 

  57. Myklebust, B. M., Gottlieb, G. L., Penn, R. L., and Agarwal, G. C. (1982). Reciprocal excitation of antagonistic muscles as a differentiating feature in spasticity.Ann. Neurol. 12367–374.

    Google Scholar 

  58. Naftchi, N. E. (Ed.) (1979).Spinal Cord Injury, Spectrum, New York, 1982.

    Google Scholar 

  59. Nelson, S. G., and Mendell, L. M. (1979). Enhancement in Ia-motoneuron synaptic transmission caudal to chronic spinal cord transection.J. Neurophysiol. 42642–654.

    Google Scholar 

  60. Passatore, M., and Filippi, G. M. (1981). On whether there is a direct sympathetic influence on jaw muscle spindles.Brain Res. 219162–165.

    Google Scholar 

  61. Patterson, M. M. (1980). Mechanisms of classical conditioning of spinal reflexes. InNeural Mechanisms of Goal-Directed Behavior and Learning (Thompson, R. F., Hicks, L. H., and Shvyrkov, V. B., Eds.), Academic, New York, pp. 263–272.

    Google Scholar 

  62. Rall, W. (1974). Dendritic spines, synaptic potency and neuronal plasticity. InCellular Mechanisms Subserving Changes in Neuronal Activity (Woody, C. D., Brown, K. A., Crow, T. J., Jr., and Knispel, J. D., Eds.), Brain Information Service, Los Angeles, pp. 13–22.

    Google Scholar 

  63. Rothwell, J. C., Traub, M. M., and Marsden, C. D. (1980). Influence of voluntary intent on the human long-latency stretch reflex.Nature 286496–498.

    Google Scholar 

  64. Stein, R. B. (1983). What variable(s) does the nervous system control in limb movements?Behav. Brain Sci. 5535–577.

    Google Scholar 

  65. Sypert, G. W., Fleshman, J. W., and Munson, J. B. (1980). Comparison of monosynaptic actions of medial gastrocnemius group Ia and group II muscle spindle afferents on triceps surae motoneurons.J. Neurophysiol. 44726–738.

    Google Scholar 

  66. Taylor, A., and Prochazka, A. (Eds.) (1981).Muscle Receptors and Movement, Oxford University Press, New York, pp. 83–294.

    Google Scholar 

  67. Teyler, T. J., and Discenna, P. (1984). Long-term potentiation as a candidate mnemonic device.Brain Res. Rev. 715–28.

    Google Scholar 

  68. Thompson, R. F. (1983). Neuronal substrates of simple associative learning: Classical conditioning.Trends Neurosci. 6270–275.

    Google Scholar 

  69. Thompson, R. F., Berger, T. W., and Madden, J., IV (1983).Annu. Rev. Neurosci. 6447–491.

    Google Scholar 

  70. Vallbo, Å. B. (1974). Human muscle spindle discharge during isometric voluntary contractions. Amplitude relationships between spindle frequency and torque.Acta Physiol. Scand. 90319–336.

    Google Scholar 

  71. Wolpaw, J. R. (1982). Reflexes capable of change: Models for the study of memory.Fed. Proc. 412146.

    Google Scholar 

  72. Wolpaw, J. R. (1983). Adaptive plasticity in the primate spinal stretch reflex: Reversal and re-development.Brain Res. 278299–304.

    Google Scholar 

  73. Wolpaw, J. R., and O'Keefe, J. A. (1984). Adaptive plasticity in the primate spinal stretch reflex: Evidence for a two-phase process.J. Neurosci. 42718–2724.

    Google Scholar 

  74. Wolpaw, J. R., and Seegal, R. F. (1982). Diurnal rhythm in the spinal stretch reflex.Brain Res. 244365–369.

    Google Scholar 

  75. Wolpaw, J. R., Kieffer, V. A., Seegal, R. F., Braitman, D. J., and Sanders, M. G. (1983a). Adaptive plasticity in the spinal stretch reflex.Brain Res. 267196–200.

    Google Scholar 

  76. Wolpaw, J. R., Braitman, D. J., and Seegal, R. F. (1983b). Adaptive plasticity in the primate spinal stretch reflex: Initial development.J. Neurophysiol. 501296–1311.

    Google Scholar 

  77. Wolpaw, J. R., Seegal, R. F., and O'Keefe, J. A. (1983c). Adaptive plasticity in the primate spinal stretch reflex: Behavior of synergist and antagonist muscles.J. Neurophysiol. 501312–1319.

    Google Scholar 

  78. Wolpaw, J. R., Noonan, P. A., and O'Keefe, J. A. (1984). Adaptive plasticity and diurnal rhythm in the primate spinal stretch reflex are independent phenomena.Brain Res. 300385–391.

    Google Scholar 

  79. Woody, C. D. (1982). Neurophysiologic correlates of latent facilitation. InConditioning: Representation of Involved Neural Function (Woody, C. D., Ed.), Plenum, New York, pp. 233–248.

    Google Scholar 

  80. Woody, C. D., and Black-Cleworth, P. (1973). Differences in excitability of cortical neurons as a function of motor projection in conditioned cats.J. Neurophysiol. 361104–1116.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wolpaw, J.R. Adaptive plasticity in the spinal stretch reflex: An accessible substrate of memory?. Cell Mol Neurobiol 5, 147–165 (1985). https://doi.org/10.1007/BF00711090

Download citation

Key words

  • plasticity
  • stretch reflex
  • spinal reflex
  • primate
  • learning
  • memory