Cellular and Molecular Neurobiology

, Volume 2, Issue 2, pp 105–113 | Cite as

Differential distribution of gangliosides in nerve-cell cultures

  • Wilfried Dimpfel


  1. 1.

    The continuous tumor-cell lines Neuro 2a, NB41/A3, and C6 were compared with regard to ganglioside synthesis. In the two neuroblastoma lines a very high rate of synthesis of GM2 could be observed, whereas the glioma line C6 showed a high prevalence of synthesizing GM3. None of them produced GD1b or GT1b. [For nomenclature, see the proposal of Svennerholm (1963).]

  2. 2.

    Primary cultures appeared to be very similar to nervous tissuein vivo, containing essentially all the major brain gangliosides in comparable amounts.

  3. 3.

    Treatment of primary cultures with the neurotoxins kainic acid and hydroxydopamine showed a decrease in neurons as measured by125I-labeled tetanus toxin binding concomitant with a selective loss of GT1b, GD1b, GD1a, and GM1 but not GM3.

  4. 4.

    It is concluded that the ganglioside GM3 is confined mainly to nonneuronal cells, whereas the other four gangliosides mentioned are normal constituents of the neuronal membrane.


Key words

gangliosides nerve cells cell culture neurotoxins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, S., Chanoy, N. C., and Yu, R. L. (1978). High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species.Anal. Biochem. 89437–450.Google Scholar
  2. Avrova, N. F., Chenykaeva, E. Ja., and Obukhova, E. L. (1973). Ganglioside composition and content of rat-brain subcellular fractions.J. Neurochem. 20997–1004.Google Scholar
  3. Bizzini, G., Turpin, A., and Raynaud, M. (1969). Production et purification de la toxine tétanique.Ann. Inst. Pasteur 116686–712.Google Scholar
  4. Bornstein, M.B. (1958). Reconstituted rat-tail collagen used as substrate for tissue cultures on coverslips in Maximov slides and roller tubes.Lab. Invest. 7134–137.Google Scholar
  5. Burton, R. M., Garcia-Bunuel, L., Golden, M., and Balfour, Y. B. (1963). Incorporation of radioactivity of D-glucosamine-I-C14, D-glucose-I-C14, D-galactose-I-C14, and DL-serine-3-C14 into rat brain glycolipids.Biochem. 2580–585.Google Scholar
  6. Coyle, I. T., Molliver, M. E., and Kuhar, M. I. (1978). In situ injection of kainic acid: A new method for selectivity lesioning neuronal cell bodies while sparing axons in passage.J. Comp. Neurol. 180301–324.Google Scholar
  7. Dawson, G. (1979). Regulation of glycosphingolipid metabolism in mouse neuroblastoma and glioma cell lines.J. Biol. Chem. 254155–162.Google Scholar
  8. De Baecque, C., Johnson, A. B., Naiki, M., Schwarting, G., and Marcus, D. M. (1976). Ganglioside localisation in cerebellar cortex: An immunoperoxidase study with antibody to GM1 ganglioside.Brain Res. 114117–122.Google Scholar
  9. Dimpfel, W. (1980). Rat nerve cell cultures in pharmacology and toxicology.Arch. Toxicol. 4455–62.Google Scholar
  10. Dimpfel, W. (1981). Mammalian nerve cell culture. InMethods in Enzymology.Vol. 77 (Jakoby, W. B., Ed.), Academic Press, New York, pp. 162–166.Google Scholar
  11. Dimpfel, W., Neale, I. H., and Habermann, E. (1975).125I-Labeled tetanus toxin as a neuronal marker in tissue cultures derived from embryonic CNS.Naunyn-Schmiedeberg Arch. Pharmacol. 290329–333.Google Scholar
  12. Dimpfel, W., Huang, R. T. C., and Habermann, E. (1977). Gangliosides in nervous tissue cultures and binding of125I-labelled tetanus toxin, a neuronal marker.J. Neurochem. 29329–334.Google Scholar
  13. Dimpfel, W., Möller, W., and Mengs, K. (1981). Ganglioside-induced neurite formation in cultured neuroblastoma cells. InGangliosides in Neurological and Neuromuscular Function, Development and Repair. Rapport, M. M., and Gorio, A., Eds., Raven Press, New York, pp. 119–134.Google Scholar
  14. Dominick, E., and Gielen, W. (1968). Über unterschiedliche Gehalte einzelner Gehirnregionen an Gangliosiden.Hoppe Seyler Z. Physiol. Chem. 349731–736.Google Scholar
  15. Habermann, E. (1970). Pharmakokinetische Besonderheiten des Tetanustoxins und ihre Beziehungen zur Pathogenese des lokalen bzw. generalisierten Tetanus.Naunyn-Schmiedeberg Arch. Pharmakol. 2671–19.Google Scholar
  16. Hanson, N.- A., Holmgren, I., and Svennerholm, L. (1977). Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin.Proc. Natl. Acad. Sci. USA 743782–3786.Google Scholar
  17. Holmgren, I., Lönnroth, I., and Svennerholm, L. (1973). Tissue receptor for cholera exotoxin: Postulated structure studies with GM1 ganglioside and related glycolipids.Infect. Immun. 8208–214.Google Scholar
  18. Kemp, S. F., and Stoolmiller, C. (1976). Biosynthesis of glycosphingolipids in cultured mouse neuroblastoma cells.J. Biol. Chem. 2517626–7631.Google Scholar
  19. Ledeen, R., Salsman, K., and Cabrera, M. (1968). Gangliosides in subacute sclerosing leukoencephalitis: Isolation and fatty acid composition of nine fractions.J. Lipid Res. 9129.Google Scholar
  20. Mandel, P., Dreyfus, H., Yusufi, A. N. K., Sarlieve, L., Robert, I., Neskovic, N., Harth, S., and Rebel, G. (1980). Neuronal and glial cell cultures, a tool for investigation of ganglioside function. InStructure and Function of Gangliosides. Adv. Expl. Med. Biol. Vol. 125 (Svennerholm, L., Mandel, P., Dreyfus, H., and Urban, P.- F., Eds.), Plenum Press, New York, pp. 515–531.Google Scholar
  21. Raff, M. C., Brockes, J. P., Fields, K. L., and Mirsky, R. (1979). Neuronal cell markers: The end of the beginning.Progr. Brain Res. 5117–22.Google Scholar
  22. Robert, I., Rebel, G., and Mandel, P. (1977). Glycosphingolipids from cultured astroblasts.J. Lipid Res. 18517–522.Google Scholar
  23. Schachner, M., and Willinger, M. (1979). Cell type-specific cell surface antigens in the cerebellum.Progr. Brain Res. 5123–44.Google Scholar
  24. Suzuki, K. (1965). The pattern of mammalian brain gangliosides. III. Regional and developmental difference.J. Neurochem. 12969–979.Google Scholar
  25. Svennerholm, L. (1963). Chromatographic separation of human brain gangliosides.J. Neurochem. 10613–623.Google Scholar
  26. Svennerholm, L. (1976). Polysaturated fatty acid lipidosis, a new nosological entity.Adv. Exp. Med. Biol. 68389–402.Google Scholar
  27. Zis, A. P., Marangos, P. J., Parma, A. M., and McGeer, E. G. (1980). Changes in striated neuron-specific enolase (NSE) and non-neuronal enolase (NNE) following kainic acid administration.Brain Res. 183486–489.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Wilfried Dimpfel
    • 1
  1. 1.Pharmakologisches Institut der Justus-Liebig-Universität GieβenGieβenGermany

Personalised recommendations