Cellular and Molecular Neurobiology

, Volume 4, Issue 2, pp 191–196 | Cite as

Activation ofβ-adrenergic receptors stimulates taurine release from glial cells

  • William G. Shain
  • David L. Martin
Short Communication


  1. 1.

    Activation of adrenergic receptors in primary cultures of astrocytes and LRM55 glial cells stimulates taurine release.

  2. 2.

    Release is inhibited by theβ-adrenergic antagonists alprenolol and propanolol but not by theα-adrenergic antagonist phentolamine.

  3. 3.

    Receptor-mediated taurine release occurs via a specific mechanism, since efflux of other amino acids and metabolites is not affected by theβ-adrenergic agonist isoproterenol.


Key words

glia β-adrenergic receptors taurine release 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schofeniels, E., Frank, G., Hertz, L., and Towers, D. B. (1977).Dynamic Properties of Glia Cells, Pergamon Press, Oxford.Google Scholar
  2. 2.
    Martin, D. L., and Shain, W. (1979). High affinity transport of taurine andβ-alanine and low affinity transport ofγ-aminobutyric acid by a single transport system in cultured glioma cells.J. Biol. Chem. 2547076–7084.Google Scholar
  3. 3.
    Waniewski, R., and Martin, D. L. (1983). Selective inhibition of glial versus neuronal uptake of L-glutamic acid by SITS.Brain Res. 268390–394.Google Scholar
  4. 4.
    Wolpaw, E. W., and Martin, D. L. (1984). Cl transport in a glioma cell line: evidence for two transport mechanisms.Brain Res. 297317–327.Google Scholar
  5. 5.
    Seligmann, B., Martin, D. L., and Shain, W. (1979). Membrane potential and taurine transport in a cultured glioma cell line.Neurosci. Abstr. 51021.Google Scholar
  6. 6.
    Kimelberg, H. K., Stieg, P. E., and Mazurkiewicz, J. E. (1982). Immunocytochemical and biochemical analysis of carbonic anhydrase in primary astrocyte cultures from rat brain.J. Neurochem. 39734–742.Google Scholar
  7. 7.
    Madelian, V., and Shain, W. (1983). Kinetics and pharmacology of [125I]-iodohydroxybenzylpindolol binding to the glial cell line LRM-55.Neurosci. Abstr. 91118.Google Scholar
  8. 8.
    Gilman, A. G., and Nirenberg, M. (1971). Effect of catecholamines on the adenosine 3′,5′-cyclic monophosphate concentrations of clonal satellite cells of neurons.Proc. Natl. Acad. Sci USA 682165–2168.Google Scholar
  9. 9.
    Lucas, M., and Bockaert, J. (1977). Use of (−)-[3H]dihydroalprenolol to studyβ-adrenergic receptor adenylate cyclase coupling in C6 glioma cells: Role of 5′-guanylyliminodiphosphate.J. Mol. Pharmacol. 13314–329.Google Scholar
  10. 10.
    Maguire, M. E., Wilkund, R. A., Anderson, H. J., and Gilman, A. G. (1976). Binding of [125I]-iodohydrobenzylpindolol to putativeβ-adrenergic receptors of rat glioma cells and other cell clones.J. Biol. Chem. 2511221–1231.Google Scholar
  11. 11.
    Schmitt, H., and Pochet, R. (1977). In vivo labeling ofβ-adrenergic receptors on rat glioma cells.FEBS Lett. 76302–305.Google Scholar
  12. 12.
    Terasaki, W. L., Linden, J., and Brooker, G. (1979). Quantitative relationship betweenβ-adrenergic receptor number and physiologic responses as studied with long-lastingβ-adrenergic antagonist.Proc. Natl. Acad. Sci USA 766401–6045.Google Scholar
  13. 13.
    Johnson, G. L., Wolfe, B. B., Harden, T. K., Molinoff, P. B., and Perkins, J. P. (1978). Role ofβ-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells.J. Biol. Chem. 2531472–1480.Google Scholar
  14. 14.
    Su, U. F., Harden, T. K., and Perkins, J. P. (1979). Isoproterenol-induced desensitization of adenylate cyclase in human astrocytoma cells.J. Biol. Chem. 25438–41.Google Scholar
  15. 15.
    McCarthy, K. D., and deVellis, J. (1978). Alpha-adrenergic receptor modulation of beta-adrenergic, adenosine and prostaglandin E1 increased 3′,5′-cyclic adenosine monophosphate levels in primary cultures of glia.J. Cyc. Nucl. Res. 415–26.Google Scholar
  16. 16.
    Harden, T. K., and McCarthy, K. D. (1982). Identification of the beta-adrenergic receptor subtype on astroglia purified from rat brain.J. Pharmacol Exp. Ther. 222600–605.Google Scholar
  17. 17.
    Naumi, S., Kimelberg, H. K., and Bourke, R. S. (1978). Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain.J. Neurochem. 311479–1490.Google Scholar
  18. 18.
    van Calker, D., Löffler, F., and Hamprecht, B. (1983). Corticotropin peptides and melanotropins elevate the level of adenosine 3′,5′-cyclic monophosphate in cultured murine brain cells.J. Neurochem. 40418–427.Google Scholar
  19. 19.
    Rougon, G., Noble, M., and Mudge, A. W. (1983). Neuropeptides modulate theβ-adrenergic response of purified astrocytes in vitro.Nature 305715–717.Google Scholar
  20. 20.
    Voaden, M. J., Lake, N., Marshall, J., and Morjarian, B. (1977). Studies on the distribution of taurine and other neuroactive amino acids in the retina.Exp. Eye Res. 25249–257.Google Scholar
  21. 21.
    Huxtable, R. J. (1982). Taurine and the Heart.Adv. Exp. Med. Biol. 139161–164.Google Scholar
  22. 22.
    Huxtable, R. J., and Lippincott, S. E. (1982). Sources and turnover rates of taurine in newborn, weanling, and mature rats.Adv. Exp. Med. Biol. 13923–46.Google Scholar
  23. 23.
    Okamoto, K., Kimura, H., and Sakai, Y. (1983). Taurine-induced increase in the Cl conductance of cerebellar Purkinje cell dendrites in vitro.Brain Res. 259319–323.Google Scholar
  24. 24.
    Okamoto, K., Kimura, H., and Sakai, Y. (1983). Ionic mechanisms of the action of taurine on cerebellar Purkinje cell dendrites in vitro: Intradendritic study.Brain Res. 260261–269.Google Scholar
  25. 25.
    Laird, H. E., and Huxtable, R. J. (1978). Taurine and audiogenic epilepsy inTaurine and Neurological Disorders (Barbeau, R., and Huxtable, R. J., Eds.), Raven Press, New York, pp. 339–357.Google Scholar
  26. 26.
    Mutani, R., Bergamini, L., and Durelli, L. (1978). Taurine in experimental and human epilepsy. InTaurine and Neurological Disorders (Barbeau, R., and Huxtable, R. J., Eds.), Raven Press, New York, pp. 359–373.Google Scholar
  27. 27.
    van Gelder, N. M. (1978). Glutamic acid and epilepsy: The action of taurine. InTaurine and Neurological Disorders (Barbeau, A., and Huxtable, R. J., Eds.), Raven Press, New York, pp. 387–402.Google Scholar
  28. 28.
    Pasantes-Morales, H., and Arzate, M. E. (1981). Effect of taurine on seizures induced by 4-aminopyridine.J. Neurosci. Res. 6465–474.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • William G. Shain
    • 1
  • David L. Martin
    • 1
  1. 1.Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations