Cellular and Molecular Neurobiology

, Volume 3, Issue 3, pp 203–212 | Cite as

Effect of histrionicotoxin on ion channels in synaptic and conducting membranes of electroplax ofElectrophorus electricus

  • Eva Bartels-Bernal
  • Edgar Diaz
  • Rosalina Cadena
  • Jorge Ramos
  • John W. Daly


  1. 1.

    Histrionicotoxin (HTX) at low concentrations of 5–10µM blocks the postsynaptic potential of the electroplax ofElectrophorus electricus.

  2. 2.

    At 100-fold higher concentrations, HTX blocks the directly evoked action potentials of the conducting membrane.

  3. 3.

    The pH dependence of the blockade by HTX at synaptic channels is different from that at the conducting membrane. At the synapse HTX is more potent at acid pH, while at the conducting membrane it is more potent at basic pH.

  4. 4.

    HTX at high concentrations antagonizes the effects of batrachotoxin, indicative of an effect on the batrachotoxin-sensitive sodium channels involved in action potential generation.

  5. 5.

    While the effects of HTX on the synaptic channels are concentration, time, and pH dependent, the effects on the channels of the conducting membrane are, in addition, use dependent, suggesting interactions of HTX with the activated forms of these channels.


Key words

batrachotoxin histrionicotoxin acetylcholine sodium channels local anesthetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, E. X., and Daly, J. W. (1977). Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. InReceptors and Recognition (Cuatracasas, P., Ed.), Chapman and Hall, London, pp. 297–338.Google Scholar
  2. Albuquerque, E. X., Adler, M., Spivak, C. E., and Aguayo, L. (1980). Mechanism of nicotinic channel activation and blockade.Ann N.Y. Acad. Sci. 258204–238.Google Scholar
  3. Bartels de Bernal, E., Llano, M. I., and Diaz, E. (1975). Algunos efectos de la batracotoxina sobre las electroplacas de la anguila electrica y su antagonismo con anesthesicos locales.Acta Med. Valle 674–80.Google Scholar
  4. Bartels de Bernal, E., Rosenberry, T. L., and Daly, J. W. (1977). Effect of batrachotoxin on the electroplax of electric eel: Evidence for voltage-dependent interaction with sodium channels.Proc. Natl. Acad. Sci. USA 74951–955.Google Scholar
  5. Bartels de Bernal, E., Cadena, R., and Diaz, E. (1982). Bloqueo del potencial de accion en el electrocito deElectrophorus electricus por histrionicotoxina.Colombia Med. 132–6.Google Scholar
  6. Burgermeister, W., Catterall, W. A., and Witkop, B. (1977). Histrionicotoxin enhances agonist-induced desensitization of acetylcholine receptor.Proc. Natl. Acad. Sci. USA 745754–5758.Google Scholar
  7. Creveling, C. R., McNeal, E. T., Daly, J. W., and Brown, G. B. (1983). Batrachotoxin-induced depolarization and [3H]batrachotoxinin-A 20-α-benzoate binding in a vesicular preparation from guinea pig cerebral cortex: Inhibition by local anesthetics.Mol. Pharmacol. 23350–358.Google Scholar
  8. Courtney, K. R. (1975). Mechanism of frequency-dependent inhibition of sodium currents in frog myelinated nerve by the lidocaine derivative GEA 968.J. Pharmacol. Exp. Ther. 195205–236.Google Scholar
  9. Daly, J. W., Karle, I., Myers, C. W., Tokuyama, T., Waters, J. A., and Witkop, B. (1971). Histrionicotoxins: Roentgen-ray analysis of the novel allenic and acetylenic spiroalkaloids isolated from a Colombian frog,Dendrobates histrionicus.Proc. Natl. Acad. Sci. USA 681870–1875.Google Scholar
  10. Daly, J. W., Witkop, B., Tokuyama, T., Nishikawa, T., and Karle, I. L. (1977). Gephyrotoxins, histrionicotoxins and pumiliotoxins from the neotropical frogDendrobates histrionicus.Helv. Chim. Acta 601128–1140.Google Scholar
  11. Eldefrawi, A. T., Eldefrawi, M. E., Albuquerque, E. X., Oliveira, A. C., Mansour, N., Adler, M., Daly, J. W., Brown, G. B., Burgermeister, W., and Witkop, B. (1977). Perhydrohistrionicotoxin: A potential ligand for the ion conductance modulator of the acetylcholine receptor.Proc. Natl. Acad. Sci. USA 742172–2176.Google Scholar
  12. Eldefrawi, M. E., Aronstam, R. S., Bakry, N. M., Eldefrawi, A. T., and Albuquerque, E. X. (1980). Activation, inactivation, and desensitization of acetylcholine receptor channel complex detected by binding of perhydrohistrionicotoxin.Proc. Natl. Acad. Sci. USA 772309–2313.Google Scholar
  13. Glavinovic, M., Henry, J. L., Kato, G., Krnjevic, K., and Puil, E. (1974). Histrionicotoxin: Effects on some central and peripheral excitable cells.Can. J. Physiol. Pharmacol. 521220–1226.Google Scholar
  14. Heidman, T., and Changeux, J. -P. (1979). Fast kinetic studies on the allosteric interactions between acetylcholine-receptor and local anesthetic binding sites.Eur. J. Biochem. 94281–296.Google Scholar
  15. Heidman, T., and Changeux, J. -P. (1981). Stabilization of the high affinity state of the membrane-bound acetylcholine receptor fromTorpedo marmorata by non-competitive blockers.FEBS Lett. 131239–244.Google Scholar
  16. Hille, B. (1977). Local anesthetics: Hydrophilic and hydrophobic pathways for the drug receptor reaction.J. Gen. Physiol. 69497–515.Google Scholar
  17. Kato, G., and Changeux, J. -P. (1976). Studies on the effect of histrionicotoxin on the monocellular electroplax fromElectrophorus electricus and on the binding of [3H]acetylcholine to membrane fragments fromTorpedo marmorata.Mol. Pharmacol. 1292–100.Google Scholar
  18. Khodorov, B. (1978). Chemicals as tools to study nerve fiber sodium channels: Effects of batrachotoxin and some local anesthetics. InMembrane Transport Processes, Vol. II (Tosteson, E. D., Cuchinnikov, Y. A., and LaTorre, R., Eds.), Raven Press, New York, pp. 153–174.Google Scholar
  19. Kilpatrick, D. L., Slepetis, R., and Kirshner, N. (1981). Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells.J. Neurochem. 361245–1255.Google Scholar
  20. Krodel, E. K., Beckman, R. A., and Cohen, J. B. (1979). Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated fromTorpedo marmorata electric tissue.Mol. Pharmacol. 15294–312.Google Scholar
  21. Lapa, A. J., Albuquerque, E. X., Sarvey, J. M., Daly, J., and Witkop, B. (1975). Effects of histrionicotoxin on the chemosensitive and electrical properties of skeletal muscle.Exp. Neurol. 47558–578.Google Scholar
  22. Masukawa, L. M., and Albuquerque, E. X. (1978). Voltage- and time-dependent action of histrionicotoxin on the endplate current of the frog muscle.J. Gen. Physiol. 72251–367.Google Scholar
  23. Oswald, R., and Changeux, J. -P. (1981). Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor fromTorpedo marmorata.Proc. Natl. Acad. Sci. USA 783925–3929.Google Scholar
  24. Revenko, S. V., Khodorov, B. I., and Shapovalova, L. M. (1982). The effect of yohimbine on sodium and gating currents in frog Ranvier node membrane.Neuroscience 71377–1387.Google Scholar
  25. Rosenberg, P., Higman, H. B., and Bartels, E. (1962). The active structure of local anesthetics. Effects on electrical and cholinesterase activity.Biochim. Biophys. Acta 66406–414.Google Scholar
  26. Schoffeniels, E., and Nachmansohn, D. (1957). An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds.Biochim. Biophys. Acta 261–15.Google Scholar
  27. Sobel, A., Heidmann, T., Hofler, J., and Changeux, J. -P. (1978). Distinct protein components fromTorpedo marmorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin.Proc. Natl. Acad. Sci. USA 75510–514.Google Scholar
  28. Spivak, C. E., Maleque, M. A., Oliveira, A. C., Masukawa, L., Tokuyama, T., Daly, J. W., and Albuquerque, E. X. (1982). Actions of histrionicotoxins at the ion channel of the nicotinic acetylcholine receptor and the voltage sensitive ion channels of muscle membranes.Mol. Pharmacol. 21251–261.Google Scholar
  29. Tokuyama, T., Daly, J., and Witkop, B. (1969). The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog,Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs.J. Am. Chem. Soc. 913931–3938.Google Scholar
  30. Yeh, J. Z. (1979). Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons.Biophys. J. 24569–574.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Eva Bartels-Bernal
    • 1
  • Edgar Diaz
    • 2
  • Rosalina Cadena
    • 1
  • Jorge Ramos
    • 3
  • John W. Daly
    • 4
  1. 1.Seccion de Farmacologia, Departimento de Ciencias FisiologicasUniversidad del ValleCaliColombia
  2. 2.Departimento de FisicaUniversidad del ValleCaliColombia
  3. 3.Departimento de BiologiaUniversidad del ValleCaliColombia
  4. 4.Laboratory of Bioorganic ChemistryNational Institute of Arthritis, Diabetes, and Digestive and Kidney DiseasesBethesdaUSA

Personalised recommendations