Cellular and Molecular Neurobiology

, Volume 1, Issue 3, pp 231–258 | Cite as

Structural models of the nicotinic acetylcholine receptor and its toxin-binding sites

  • H. Robert Guy
Article

Abstract

Models of the protein structure of agonist-, competitive antagonist-, and snake neurotoxin-binding sites were designed using the sequence of the first 54 residues of the acetylcholine receptor (AChR)α subunit from Torpedo californica. These models are based on the premise that the N-terminal portions of the subunits form the outermost extracellular surface of the AChR and that agonists bind to this portion. The models were developed by predicting the secondary strucutre of theα-subunit N-terminal segment from its sequence, then using these predictions to fold the segment into tertiary structures that should bind snake neurotoxins, agonists, and antagonists. Possible gating mechanisms and quaternary structures are suggested by the proposed tertiary structures of the subunits. Experiments are suggested to test aspects of the models.

Key words

acetylcholine receptor molecular model protein structure snake neurotoxin cholinergic agonists cholinergic antagonists 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. J., and Blobel, G. (1980).In vitro synthesis and membrane integration of the subunits ofTorpedo acetylcholine receptor.Neurosci. Abstr. 6209.Google Scholar
  2. Barrantes, F. J. (1974). The nicotinic cholinergic receptor: Different compositions evidenced by statistical analysis.Biochem. Biophys. Res. Commun. 62407–414.Google Scholar
  3. Bartfeld, D., and Fuchs, S. (1979). Active acetylcholine receptor fragment obtained by tryptic digestion of acetylcholine receptor fromTorpedo californica.Biochem. Biophys. Res. Commun. 89512–519.Google Scholar
  4. Beers, W. H., and Reich E. (1970). Structure and activity of acetylcholine.Nature 228917–922.Google Scholar
  5. Blanchard, S. G., Quast, U., Reed, K., Lee, T., Schimerlik, M. I., Vandlen, R., Claudio, T., Strader, C. D., Moore, H. -P. H., and Raftery, M. A. (1979). Interaction of [125I]-α-bungarotoxin with acetylcholine receptor fromTorpedo californica.Biochemistry 181875–1883.Google Scholar
  6. Carpenter, D. O., Swann, J. W., and Yarowsky, P. J. (1977). Effect of curare on responses to different putative neurotransmitters inAplysia neurons.J. Neurobiol. 8119–132.Google Scholar
  7. Chang, H. W., and Bock, F. (1979). Structural stabilization of isolated acetylcholine receptor: Specific interaction with phospholipids.Biochemistry 18172–179.Google Scholar
  8. Chou, P. Y., and Fasmen, G. D. (1974). Conformation parameters for amino acids in helical,β-sheet, and random coil regions calculated from proteins.Biochemistry 13211–245.Google Scholar
  9. Chou, P. Y., and Fasmen, G. D. (1978). Empirical predictions of protein conformation.Annu. Rev. Biochem. 47251–276.Google Scholar
  10. Cohen, F. E., Sternberg, M. J. E., and Taylor, W. R. (1980). Analysis and prediction of proteinβ-sheet structures by a combinatorial approach.Nature 285378–382.Google Scholar
  11. Damle, V. N., and Karlin, A. (1980). Effects of agonists and antagonists on the reactivity of the binding site disulfide in acetylcholine receptor fromTorpedo californica.Biochemistry 193924–3932.Google Scholar
  12. Edlestein, C., Kezdy, F. J., Scanu, A. M., and Shen, B. W. (1979). Apolipoproteins and the structural organization of plasma lipoproteins: Human plasma high density lipoprotein-3.J. Lipid Res. 2143–153.Google Scholar
  13. Engelman, D. M., Henderson, R., McLachlan, A. D., and Wallace, B. A. (1980). Path of the polypeptide in bacteriorhodopsin.Proc. Natl. Acad. Sci. USA 772023–2027.Google Scholar
  14. Feltz, A., and Trautmann, A. (1980). Interaction between nerve-released acetylcholine and bath applied agonists at the frog end-plate.J. Physiol. 299533–552.Google Scholar
  15. Gonzalez-Ross, J. M., Paraschos, A., and Martinez-Carrion, M. (1980). Reconstitution of functional membrane-bound acetylcholine receptor from isolatedTorpedo californica receptor protein and electroplax lipids.Proc. Natl. Acad. Sci. USA 771796–1800.Google Scholar
  16. Gund, P., Andose, J. D., Rhodes, J. B., and Smith, G. M. (1980). Three-dimensional molecular modeling and drug design.Science. 2081425–1431.Google Scholar
  17. Guy, H. R. (1980). The coiled coil in a beta barrel: A model of the porin-lipoprotein complex ofE. coli outer membrane.Fed. Proc. 391832.Google Scholar
  18. Heidmann, T., and Changeux, J. -P. (1978). Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states.Annu. Rev. Biochem. 47317–357.Google Scholar
  19. Henderson, D., Eibl, H., and Weber, K. (1979). Structure and biochemistry of mouse hepatic gap junctions.J. Mol. Biol. 132193–218.Google Scholar
  20. Karlin, A. (1969). Chemical modification of the active site of the ACh receptor.J. Gen. Physiol. 54245.Google Scholar
  21. Karlin, A., Weill, C., McNamee, M., and Valderrama, R. (1976). Facets of the structures of acetylcholine receptors fromElectrophorus andTorpedo.Cold Spring Harbor Symp. Quant. Biol. 40203–210.Google Scholar
  22. Karlsson, E. (1979). Chemistry of proteins in snake venoms.Hand. Exp. Pharmacol. 52159–204.Google Scholar
  23. Kennedy, S. J. (1978). Structures of membrane proteinsJ. Membr. Biol. 42265–279.Google Scholar
  24. Kimball, M. R., Sato, A., Richardson, J. S., Rosen, L. S. and Low, B. W. (1979). Molecular conformation of erabutoxin b: Atomic coordinates at 2.5 Å resolution.Biochem. Biophys. Res. Commun. 88950–959.Google Scholar
  25. Klymkowsky, M. W., and Stroud, R. M. (1979). Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor fromTorpedo californica. J. Mol. Biol.128319–334.Google Scholar
  26. Kistler, J., and Stroud, R. M. (1981).Proc. Natl. Acad. Sci. USA. 783678–3682.Google Scholar
  27. Levitt, M. (1979). Conformational preferences of amino acids in globular proteins.Biochemistry 174277–4284.Google Scholar
  28. Lim, V. I. (1974). Algorithms for prediction ofα-helical andβ-structural regions in globular proteins.J. Mol. Biol. 88873–894.Google Scholar
  29. Lindstrom, J., Merlie, J., and Yogeeswaran, G. (1979). Biochemical properties of acetylcholine receptor subunits fromTorpedo californica.Biochemistry 184465–4470.Google Scholar
  30. Low, B. W. (1979). Three-dimensional structure of erabutoxin b, prototype structure of the snake venom postsynaptic neurotoxins: Consideration of structure and function; description of the reactive site. InAdvances in Cytopharmacology (Ceccarelli, B., and Clementi, F., Eds.), Raven Press, New York, pp. 141–147.Google Scholar
  31. Low, B. W., Preston, H. S., Sato, A., Rosen, L. S., Searly, J. E., Rudko, A. D., and Richardson, J. S. (1976). Three dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receptor.Proc. Natl. Acad. Sci. USA 732991–2994.Google Scholar
  32. Maelicke, A., Fulpius, B. W., Klett, R. P., and Reich, E. (1977). Acetylcholine receptor: Responses to drug binding.J. Biol. Chem. 254811–4830.Google Scholar
  33. Mendez, B., Valenzuela, P., Martial, J. A., and Baxter, J. D. (1980). Cell-free synthesis of acetylcholine receptor polypeptides.Science 209695–697.Google Scholar
  34. Moore, H. -P. H., Hartig, P. R., and Raftery, M. A. (1979). Correlation of polypeptide composition with functional events in acetylcholine receptor-enriched membrane fromTorpedo californica.Proc. Natl. Acad. Sci. USA 766265–6269.Google Scholar
  35. Moore, W. M., Holladay, L. A., Puett, D., and Brady, R. N. (1974). On the conformation of the acetylcholine receptor protein fromTorpedo nobiliana.FEBS Lett. 45145–149.Google Scholar
  36. Nelson, N., Anholt, R., Lindstrom, J., and Montal, M. (1980). Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers.Proc. Natl. Acad. Sci. USA 773057–3061.Google Scholar
  37. Neubig, R. R., and Cohen, J. B. (1979). Equilibrium binding of [3H] tubocurarine and [3H] acetylcholine byTorpedo postsynaptic membranes: Stoichiometry and ligand interactions.Biochemistry 185464–5475.Google Scholar
  38. Neubig, R. R., and Cohen, J. B. (1980). Permeability control by cholinergic receptors inTorpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times.Biochemistry 92770–2770.Google Scholar
  39. Neubig, R. R., Krodel, E. K., Boyd, N. D., and Cohen, J. B. (1979). Acetylcholine and local anesthetic binding toTorpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides.Proc. Natl. Acad. Sci. USA 76690–694.Google Scholar
  40. Oswald, R. E., Wennogle, L. P., Saitoh, T., and Changeux, J. P. (1980). Structural aspects of the 66,000 dalton subunit of theTorpedo marmorata electroplaque acetylcholine receptor analyzed by limited proteolytic digestion.Neurosci. Abstr. 8252.Google Scholar
  41. Raftery, M., Blanchard, S., Elliott, J., Hartig, P., Moore, H. -P., Quast, U., Schimerlik, M., Witzemann, V., and Wu, W. (1979). Properties ofTorpedo californica acetylcholine receptors.Adv. Cytopharmacol. 3159–182.Google Scholar
  42. Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E. (1980). Acetylcholine receptor: Complex of homologous subunits.Science. 2081454–1456.Google Scholar
  43. Ross, M. J., Klymkowsky, M. W., Agard, D. A., and Stroud, R. M. (1977). Structural studies of a membrane-bound acetylcholine receptor fromTorpedo californica.J. Mol. Biol. 116635–659.Google Scholar
  44. Saitoh, T., Oswald, R., Wennogle, L. P., and Changeux, J.-P. (1980). Conditions for the selective labeling of the 6600 dalton chain of the acetylcholine receptor by the covalent non-competitive blocker 5-azido-[3H] trimethisoquin.FEBS Lett. 11630–36.Google Scholar
  45. Schindler, H., and Quast, U. (1980). Functional acetylcholine receptor fromTorpedo marmorata in planar membranes.Proc. Natl. Acad. Sci. USA 773052–3056.Google Scholar
  46. Smythies, J. R. (1980). Sterochemical evidence that the N-terminal 20 residue segment of theα-subunit dimer of the acetylcholine receptor protein contains the acetylcholine binding site.Fed. Proc. 391997.Google Scholar
  47. Sternberg, M. J. E., and Thornton, J. M. (1978). Prediction of protein structure from amino acid sequence.Nature. 27115–20.Google Scholar
  48. Tarrab-Hazdai, R., Bercovici, T., Goldfarb, V., and Gitler, C. (1980). Identification of the acetylcholine receptor subunit in the lipid bilayer ofTorpedo electric organ excitable membranes.J. Biol. Chem. 2551204–1209.Google Scholar
  49. Tsernoglou, D., Petsko, G. A. (1976). The crystal structure of a post-synaptic neurotoxin from sea snake at 2.2 Å resolution.FEBS Lett. 681–4.Google Scholar
  50. Tsernoglu, D., Petsko, G. A., and Hudson, R. A. (1978). Structure and function of snake venom curarimimetic neurotoxins.Mol. Pharmacol. 14710–716.Google Scholar
  51. Unwin, P. N. T., and Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens.J. Mol. Biol. 94425–440.Google Scholar
  52. Vandlen, R. L., Wu, W. C. -S., Eisenach, J. C., and Raftery, M. A. (1979). Studies of the composition of purifiedTorpedo californica acetylcholine receptor and of its subunits.Biochemistry 181845–1854.Google Scholar
  53. Walkinshaw, M. D., Saenger, W., and Maelicke, A. (1980). Three-dimensional structure of the “long” neurotoxin from cobra venom.Proc. Natl. Acad. Sci. USA 772400–2404.Google Scholar
  54. Weber, M., and Changeux, J. -P. (1974). Binding of Naja nigricolis [3H]-α-toxin to membrane fragments fromElectrophorus andTorpedo-electric organs. II. Effects of cholinergic agonists and antagonists on the binding of tritiatedα-neurotoxin.Mol.Pharmacol. 1015–34.Google Scholar
  55. Zingsheim, H. P., Neugebauer, D. -C., Barrantes, F. J., and Frank, J. (1980). Structural details of membrane-bound acetylcholine receptor fromTorpedo marmorata.Proc. Natl. Acad. Sci. USA 77952–956.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • H. Robert Guy
    • 1
  1. 1.Physiology DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations