Boundary-Layer Meteorology

, Volume 63, Issue 3, pp 259–291 | Cite as

Boundary-layer flow over analytical two-dimensional hills: A systematic comparison of different models with wind tunnel data

  • S. Finardi
  • G. Brusasca
  • M. G. Morselli
  • F. Trombetti
  • F. Tampieri


Two mass consistent models (MATHEW and MINERVE) and two dynamic linearized models (MS3DJH/3R and FLOWSTAR) are used to simulate the mean flow over two-dimensional hills of analytical shape and of varying slope. The results are compared with detailed wind tunnel data (RUSHIL experiment at US EPA). Different numerical experiments have been performed, varying input data and control parameters, to test the data-processing methodology and to evaluate the minimum input data (for mass consistent models only) necessary to obtain a reliable flow field. The models behave differently according to the physical assumptions made and numerical procedure used: an assessment is then made in order to identify the proper solution for the different conditions of topography and wind data.


Flow Field Numerical Procedure Systematic Comparison Wind Data Analytical Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anthes, R., Kou, Y., Hsie, E., Low-Nam, S. and Bettge, T. W.: 1989, ‘Evaluation of Skill and Uncertainty in Regional Numerical Models’,Quart. J. R. Meteorol. Soc. 115, 763–806.Google Scholar
  2. Beljaars, A. C. M., and Taylor, P. A.: 1989, ‘On the Inner-Layer Scale Height of Boundary-Layer Flow over Low Hills’,Boundary-Layer Meterol. 49, 433–438.Google Scholar
  3. Carruthers, D. J., Hunt, J. C. R., and Weng, W. S.: 1988, ‘A Computational Model of Stratified Turbulent Air Flow Over Hills-FLOWSTARI’, in P. Zanetti (ed.),Proceedings of ENVIROSOFT: Computer Techniques in Environmental Studies, Springer-Verlag, pp. 481–492.Google Scholar
  4. Egger, J.: 1990, ‘Thermally Forced Flows Theory’, in W. Blumen (ed.),Atmospheric Processes over Complex Terrain, Amer. Meteorol. Soc., Boston, pp. 43–58.Google Scholar
  5. Geai, P.: 1987, ‘Methode d'Interpolation et de Reconstitution Tridimensionelle d'un Champ de Vent: le Code d'Analyse Objective MINERVE’, EDF, Chatou, France, Report DER/HE/34-87.03.Google Scholar
  6. Giostra, U., and Tampieri, F.: 1988, ‘Development of a Boundary Layer Model for Evaluation of Dispersion in Complex Terrain’,Il Nuovo Cimento,11C, 549–564.Google Scholar
  7. Gong, W., and Ibbetson, A.: 1989, ‘A Wind Tunnel Study of Turbulent Flow over Model Hills’,Boundary-Layer Meteorol. 49, 113–148.Google Scholar
  8. Hunt, J. C. R., Leibovich, S., and Richards, K. J.: 1988a, ‘Turbulent Shear Flows over Low Hills’,Quart. J. R. Meteorol. Soc. 114, 1435–1470.Google Scholar
  9. Hunt, J. C. R., Richards, K. J., and Brighton, P. W. M.: 1988b, ‘Stratified Shear Flow over Low Hills’,Quart. J. R. Meteorol. Soc. 114, 859–886.Google Scholar
  10. Hunt, J. C. R., Tampieri, F., Weng, W. S., and Carruthers, D. J.: 1991, ‘Air Flow and Turbulence over Complex Terrain: a Colloquium and a Computational Workshop’,J. Fluid Mech. 227, 667–688.Google Scholar
  11. IMSL Math/Library: 1989, ‘FORTRAN Subroutines for Mathematical Applications,’ MALB-USM-PERFECT-EN8912-1.1, User Manual, pp. 550–553.Google Scholar
  12. Jackson, P. S., and Hunt, J. C. R.: 1975, ‘Turbulent Wind Flow over a Low Hill’,Quart. J. R. Meteorol. Soc. 101, 833–851.Google Scholar
  13. Jensen, N. O., Petersen, E. L. and Troen, I.: 1984, ‘Extrapolation of Mean Wind Statistics with Special Regard to Wind Energy Applications’, Report WCP-86, World Meteorological Organization, Geneva, 85 pp.Google Scholar
  14. Khurshudyan, L. H., Snyder, W. H., and Nekrasov, I. V.: 1981, ‘Flow and Dispersion of Pollutants over Two-Dimensional Hills’, U. S. Envir. Prot. Agcy. Rpt. No. EPA-600/4-81-067. Res. Tri. Pk., NC., 131 pp.Google Scholar
  15. Lawson, R. E. Jr, Snyder, W. H., and Thompson, R. S.: 1989, ‘Estimation of Maximum Surface Concentrations from Sources near Complex Terrain in Neutral Flow’,Atmos. Environ. 23, 321–331.Google Scholar
  16. Lemelin, D. R., Surry, D., and Davenport, A. G.: 1988, ‘Simple Approximations for Wind Speed-up over Hills’,J. Wind. Eng. Ind. Aerodyn. 28, 117–127.Google Scholar
  17. Morselli, M. G., Buizza, R., Finardi, S. and Brusasca, G.: 1991, ‘A Package for Wind Flow Modelling over Complex Terrain’, in G. Guariso (ed.), Guida di Informatica ambientale, PATRON EDITORE, pp. 205–209.Google Scholar
  18. Rodrigues, D. J., Greenly, G. D., Gresho, P. M., Lange, R., Lawver, B. S., Lawson, L. A., and Walker, B.: 1982, ‘User's Guide to the MATHEW/ADPIC Models’, Lawrence Livermore National Laboratory, University of California, Atmospheric and Geophysical Sciences Division, Livermore California, UASG 82-16.Google Scholar
  19. Ross, D. G., Smith, I. N., Manins, P. C., and Fox, D. G.: 1988, ‘Diagnostic Wind Field Modeling for Complex Terrain: Model Development and Testing’,J. Appl. Meteorol. 27, 785–796.Google Scholar
  20. Ross, D. G., and Fox, D. G.: 1991, ‘Evaluation of an Air Pollution Analysis System for Complex Terrain’,J. Appl. Meteorol. 30, 909–923.Google Scholar
  21. Sherman, C. A.: 1978, ‘A Mass Consistent Model for Wind Field over Complex Terrain’,J. Appl. Meteorol. 17, 312–319.Google Scholar
  22. Snyder, W. H.: 1979, ‘The EPA Meteorological Wind Tunnel: its Design, Construction and Operating Characteristics’, U.S. EPA Rpt No. EPA-600/7-79-051, Res. Tri. Pk, N.C.Google Scholar
  23. Taylor, P. A., Walmsley, J. L., and Salmon, J. R.: 1983, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Real Terrain Incorporating Wavenumber-Dependent Scaling’,Boundary-Layer Meteorol. 26, 169–189.Google Scholar
  24. Taylor, P. A., Mason, P. J., and Bradley, E. F.: 1987, ‘Boundary Layer Flow over Low Hills’,Boundary-Layer Meteorol. 39, 107–132.Google Scholar
  25. Trombetti, F., Martano, P., and Tampieri, F.: 1991, ‘Data Sets for Studies of Flow and Dispersion in Complex Terrain: I) The “RUSHIL” Wind Tunnel Experiment (Flow Data)’, Technical Report No4, FISBAT-RT-91/1.Google Scholar
  26. Trombetti, F., and Tampieri, F.: 1993, ‘Analysis of Wind Tunnel Dispersion Data over Two-Dimensional Obstacles’,Boundary-Layer Meteorol., in press.Google Scholar
  27. Walmsley, J. L., Salmon, J. R., and Taylor, P. A.: 1982, ‘On the Application of a Model of Boundary-Layer Flow over Low Hills to Real Terrain’,Boundary-Layer Meteorol. 23, 17–46.Google Scholar
  28. Walmsley, J. L., Taylor, P. A., and Keith, T.: 1986, ‘A Simple Model of Neutrally Stratified Boundary-Layer Flow over Complex Terrain with Surface Roughness Modulations (MS3DJH/3R)’,Boundary-Layer Meteorol. 36, 157–186.Google Scholar
  29. Walmsley, J. L., Troen, I., Lalas, D. P., and Mason, P. J.: 1990, ‘Surface-Layer Flow in Complex Terrain: Comparison of Models and Full-Scale Observations’,Boundary-Layer Meteorol. 52, 259–281.Google Scholar
  30. Zannetti, P.: 1990, ‘Air Pollution Modeling: Theories Computational Methods and Available Software’, Computational Mechanics Publications, Southampton, UK. 444 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • S. Finardi
    • 1
  • G. Brusasca
    • 2
  • M. G. Morselli
    • 2
  • F. Trombetti
    • 3
  • F. Tampieri
    • 3
  1. 1.CISE Divisione AmbienteSegrate (MI)Italy
  2. 2.ENEL/CRTN Servizio AmbienteMilanoItaly
  3. 3.Istituto FISBAT-CNRBolognaItaly

Personalised recommendations