Anatomy and Embryology

, Volume 186, Issue 1, pp 1–25 | Cite as

The avian muscle spindle

  • Alfred Maier
Review Article

Summary

The literature on the morphology and physiology of the avian muscle spindle is reviewed, with emphasis placed on the period from 1960 to 1991. Traits similar to or different from mammalian spindles are recognized. Apart from receptors with low intrafusal fiber counts, bird spindles contain two or three types of intrafusal fiber. Unlike that of mammals, the equatorial fiber structure in birds does not lend itself to classification into nuclear bag and nuclear chain types. Avian intrafusal fibers are separable into types based on differences in myosin heavy chain composition and motor innervation, but apportionment of these fiber types to individual spindles is more variable in birds than in mammals. There is morphological evidence in birds for the existence of both gamma and beta innervation; however, confirmation of these systems by physiological experiments is at best sketchy. A general lack of physiological data is currently the greatest drawback to a better understanding of how the avian receptor works, and what role it plays in sensorimotor integration.

Key words

Avian muscle spindle Connective tissue skeleton Intrafusal fiber types Innervation Development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adal MN (1973) The fine structure of the intrafusal muscle fibres of muscle spindles in the domestic fowl. J Anat 115:407–413Google Scholar
  2. Adal MN (1977) Leptofibrils in intrafusal muscle fibres of muscle spindles in the domestic fowl. J Anat 131:657–668Google Scholar
  3. Adal MN, Chew Cheng SB (1980a) The number, distribution and density of muscle spindles in two wing muscles of the domestic duck. J Anat 131:541–548Google Scholar
  4. Adal MN, Chew Cheng SB (1980b) Capsules of duck muscle spindles. Cell Tissue Res 211:465–474Google Scholar
  5. Adal MN, Chew Cheng SB (1980c) The sensory ending of duck muscle spindles. J Anat 131:657–668Google Scholar
  6. Adal MN, Chew Cheng SB (1980d) The blood supply of duck muscle spindles. Cell Tissue Res 212:233–239Google Scholar
  7. Adal MN, Chew Cheng SB (1987) Intrafusal muscle fibers of duck muscle spindles. J Morphol 191:225–232Google Scholar
  8. Ashmore CR, Doerr L (1971) Postnatal development of fiber types in normal and dystrophic skeletal muscle of the chick. Exp Neurol 30:431–446Google Scholar
  9. Banks R, Stacey M (1988) Quantitative studies on mammalian muscle spindles and their sensory innervation. In: Mechanoreceptors. Development, structure and function. Hnik P, Soukup T, Vejsada R, Zelena J (eds), Plenum Press, New York, pp 263–269Google Scholar
  10. Barker D (1948) The innervation of the muscle spindle. Q J Microsc Soc 89:143–186Google Scholar
  11. Barker D (1968) L'innervation motrice du muscle strié des vertébrés. Actual Neurophysiol 8:23–71Google Scholar
  12. Barker D (1974) The morphology of muscle receptors. In: Hunt CC (ed) Handbook of sensory physiology. III/2 Muscle receptors, Springer, Berlin Heidelberg New York, pp 1–190Google Scholar
  13. Barker D, Scott JA (1990) Regeneration and recovery of cat muscle spindles after devascularization. J Physiol 424:27–39Google Scholar
  14. Bayne EK, Anderson MJ, Fambrough DM (1984) Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol 99:1486–1501Google Scholar
  15. Bilo D, Jahner A, Nachtigall W (1980) Structure and innervation of wing muscle spindles in the domestic pigeon (Columba livia var. domestica); a light microscopical study. Zool Jb Anat 103:41–61Google Scholar
  16. Botterman BR, Binder MD, Stuart DG (1978) Functional anatomy of the association between motor units and muscle receptors. Am Zool 18:135–152Google Scholar
  17. Boyd IA (1962) The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles. Philos Trans R Soc Lond [Biol] 245:81–86Google Scholar
  18. Boyd IA (1976) The response of fast and slow nuclear bag fibres and nuclear chain fibres in isolated cat muscle spindles to fusimotor stimulation, and the effect of intrafusal contraction on the sensory endings. Q J Exp Physiol 61:203–254Google Scholar
  19. Boyd IA (1981) The muscle spindle controversy. Sci Prog 67:205–221Google Scholar
  20. Boyd IA, Gladden MH (1985) Review. In: Boyd IA, Gladden MH (eds) The muscle spindle. Stockton Press, New York, pp 3–22Google Scholar
  21. Boyd IA, Smith RS (1984) The muscle spindle. In: Dyck PJ, Thomas PK, Lombert EH, Bunge R (eds) Peripheral neuropathy, 2nd edn. Saunders, Philadelphia, pp 171–202Google Scholar
  22. Bridgeman CF, Eldred E (1964) Hypothesis for a pressure-sensitive mechanism in muscle spindles. Science 143:481–482Google Scholar
  23. Burridge K, Connell L (1983) A new protein of adhesion plaques and ruffling membranes. J Cell Biol 97:359–367Google Scholar
  24. Chin NK (1970) The structure and innervation of the muscle spindle in latissimus dorsi anterior and posterior muscles of the domestic fowl. Thesis. University of Hong Kong, Hong KongGoogle Scholar
  25. Chin NK (1974) Innervation of chicken muscle spindles. J Anat 119:203Google Scholar
  26. Cilimbaris PA (1910) Histologische Untersuchungen über die Muskelspindeln der Augenmuskeln. Arch Mikrosk Anat 75:692–747Google Scholar
  27. Ciment G, Ressler A, Letourneau PC, Weston JA (1986) A novel intermediate filament associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development. J Cell Biol 102:246–251Google Scholar
  28. Cipollone LT (1897) Ricerche sull'anatomia normale e patologica delle terminazione nervose nei muscoli striati. Ann Med Nav Colon [Suppl] 3:223–282Google Scholar
  29. Cooper S, Daniel PM (1949) Muscle spindles in human extrinsic eye muscles. Brain 72:1–24Google Scholar
  30. Cooper S, Gladden MH (1974) Elastic fibres and reticulin of mammalian muscle spindles and their functional significance. Q J Exp Physiol 59:367–385Google Scholar
  31. Couchman JR, Caterson B, Christner JE, Baker JR (1984) Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues. Nature 307:650–653Google Scholar
  32. DeAnda G, Rebollo MA (1965) Morphologie et histochimie des fuseaux neuromusculaires. Excerpta Med Int Cong Ser 100:684–686Google Scholar
  33. DeAnda G, Rebollo MA (1967) The neuromuscular spindles in the adult chicken. I. Morphology. Acta Anat 67:437–451Google Scholar
  34. DeAnda G, Rebollo MA (1968) Histochemistry of the neuromuscular spindles in the chicken during development. Acta Histochem 31:287–295Google Scholar
  35. DeWet PD, Farrell PR, Fedde MR (1971) Number and morphology of muscle spindles in the transversus abdominis muscle of the chicken. Poultry Sci 50:1349–1357Google Scholar
  36. Diwan FH, Milburn A (1986) The effects of temporary ischaemia on rat muscle spindles. J Embryol Exp Morphol 92:223–254Google Scholar
  37. Dogiel AS (1906) Die Endigungen der sensiblen Nerven in den Augenmuskeln und deren Sehnen beim Menschen und den Säugetieren. Arch Mikrosk Anat 68:501–526Google Scholar
  38. Dorward PK (1970) Response characteristics of muscle afferents in the domestic duck. J Physiol 211:1–17Google Scholar
  39. Dow PR, Shinn SL, Ovalle WK (1980) Ultrastructural study of blood-muscle spindle barrier after administration of horseradish peroxidase. Am J Anat 157:375–388Google Scholar
  40. Duxson MJ, Usson Y, Harris AJ (1989) The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development 107:743–750Google Scholar
  41. Eldred E, Maier A, Bridgeman CF (1974) Differences in intrafusal fiber content of spindles in several muscles of the cat. Exp Neurol 45:8–18Google Scholar
  42. Fitch JM, Gibney E, Sanderson RD, Mayne R, Linsenmayer TF (1982) Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen. J Cell Biol 95:641–647Google Scholar
  43. Fitch JM, Gross J, Mayne R, Johnson-Wint B, Linsenmayer TF (1984) Organization of collagen types I and V in the embryonic chicken cornea: monoclonal antibody studies. Proc Natl Acad Sci USA 81:2791–2795Google Scholar
  44. Fukami Y (1970) Tonic and phasic muscle spindle in snake. J Neurophysiol 33:28–45Google Scholar
  45. Fukami Y, Hunt CC (1970) Structure of snake muscle spindles. J Neurophysiol 33:9–27Google Scholar
  46. Fukami Y, Schlesinger PH (1989) Endocytosis and transcytosis by the capsule of vertebrate muscle spindles. Brain Res 499:249–257Google Scholar
  47. Gambke R, Rubinstein NA (1984) A monoclonal antibody to the embryonic myosin heavy chain of rat skeletal muscle. J Biol Chem 259:12092–12100Google Scholar
  48. Geiger B, Tokuyasu KT, Dutton AH, Singer SJ (1980) Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci 77:4127–4132Google Scholar
  49. Germino NI, D'Albora H (1965) Succinic-dehydrogenase activity in the neuromuscular spindles of the chick. Experientia 21:45–46Google Scholar
  50. Hikida RS (1985) Spaced serial section analysis of the avian muscle spindle. Anat Rec 212:255–267Google Scholar
  51. Hikida RS, Walro JM, Miller TM (1984) Ischemic degeneration of the avian muscle spindle. Acta Neuropathol 63:3–12Google Scholar
  52. Huber GC, DeWitt L (1898) A contribution on the motor nerve endings and on the nerve endings in muscle spindles. J Comp Neurol 7:169–230Google Scholar
  53. James NT, Meek GA (1972) The ultrastructure of the avian muscle spindle. J Anat 111:489–491Google Scholar
  54. James NT, Meek GA (1973) An electron microscopical study of avian muscle spindles. J Ultrastruct Res 43:193–204Google Scholar
  55. Kennedy JM, Kamel S, Tambone WW, Vrbova G, Zak R (1986) The expression of myosin heavy chain isoforms in normal and hypertrophied chicken slow muscle. J Cell Biol 103:977–983Google Scholar
  56. Kennedy WR, Yoon KS (1979) Permeability of muscle spindle capillaries and capsule. Muscle Nerve 2:1–108Google Scholar
  57. TeKronnie G, Donselaar Y, Soukup T, Zelena J (1982) Development of immunohistochemical characteristics of intrafusal fibres in normal and de-efferented rat muscle spindles. Histochemistry 74:355–366Google Scholar
  58. Kucera J (1980) Histochemical study of long nuclear chain fibers in the cat muscle spindle. Anat Rec 198:567–580Google Scholar
  59. Kucera J (1981) Histochemical profiles of cat intrafusal muscle fibers and their motor innervation. Histochemistry 73:397–418Google Scholar
  60. Kucera J, Hughes R (1983) Histological study of motor innervation to long nuclear chain intrafusal fibers in the muscle spindle of the cat. Cell Tissue Res 228:535–547Google Scholar
  61. Kucera J, Walro JM (1986) Factors that determine the form of neuromuscular junctions of intrafusal fibers in the cat. Am J Anat 176:97–117Google Scholar
  62. Kucera J, Walro JM (1989) Nonuniform expression of myosin heavy chain isoforms along the length of cat intrafusal muscle fibers. Histochemistry 92:291–299Google Scholar
  63. Kucera J, Dorovini-Zis K, Engel WK (1978) Histochemistry of rat intrafusal muscle fibers and their motor innervation. J Histochem Cytochem 11:973–988Google Scholar
  64. Kucera J, Walro JM, Reichler J (1988) Innervation of developing intrafusal muscle fibers in the rat. Am J Anat 183:344–358Google Scholar
  65. Linsenmayer TF, Mentzer A, Irwin MH, Waldrep NK, Mayne R (1986) Avian type VI collagen: monoclonal antibody production and immunohistochemical identification as a major connective tissue component of cornea and skeletal muscle. Exp Cell Res 165:518–529Google Scholar
  66. Lippock R (1977) Anatomie, Anzahl und Verteilung von Muskelspindeln in der Skelettmuskulatur des Unterarms der Amsel (Turdus merula L.). Thesis, Fachbereich 23, Free University of BerlinGoogle Scholar
  67. Mackenson-Dean CA, Hikida RS, Frangowlakis TM (1981) Formation of muscle spindles in regenerated avian muscle grafts. Cell Tissue Res 217:37–41Google Scholar
  68. Maier A (1977) Variations in intrafusal fiber size within histochemically identified types of intrafusal fibers in the pigeon. Am J Anat 150:375–380Google Scholar
  69. Maier A (1979a) Occurrence and distribution of muscle spindles in masticatory and suprahyoid muscles of the rat. Am J Anat 155:483–506Google Scholar
  70. Maier A (1979b) The blood supply of muscle spindles in some mammals and the pigeon. J Morphol 161:323–335Google Scholar
  71. Maier A (1981) Characteristics of pigeon gastrocnemius and its muscle spindle supply. Exp Neurol 74:892–906Google Scholar
  72. Maier A (1983) Differences in muscle spindle structure between pigeon muscles used in aerial and terrestrial locomotion. Am J Anat 168:27–36Google Scholar
  73. Maier A (1989a) Contours and distribution of sites that react with antiacetylcholinesterase in chicken intrafusal fibers. Am J Anat 185:33–41Google Scholar
  74. Maier A (1989b) Oxidative indexes and muscle spindle densities. Behav Brain Sci 12:661–662Google Scholar
  75. Maier A (1991a) Axon contacts and acetylcholinesterase activity on chicken intrafusal muscle fiber types identified by their myosin heavy chain composition. Anat Embryol 184:497–505Google Scholar
  76. Maier A (1991b) Myosin heavy chain isoform composition of developing intrafusal fibers in chicken muscle spindles. Soc Neurosci Abstr 17:650Google Scholar
  77. Maier A (1992) Fast and slow intrafusal fibre type systems in chicken leg muscle spindles. J Anat (in press)Google Scholar
  78. Maier A, Eldred E (1971) Comparisons in the structure of avian muscle spindles. J Comp Neurol 143:25–40Google Scholar
  79. Maier A, Mayne R (1987) Distribution of connective tissue proteins in chick muscle spindles as revealed by monoclonal antibodies: A unique distribution of brachionectin/tenascin. Am J Anat 180:226–236Google Scholar
  80. Maier A, Mayne R (1988) Immunohistochemical demonstration of connective tissue macromolecules at the equator of chick muscle spindles. In: Hnik P, Soukup T, Vejsada R, Zelena J (eds) Mechanoreceptors, development, structure and function. Plenum Press, New York, pp 275–280Google Scholar
  81. Maier A, Mayne R (1990) Connective tissue macromolecules in Golgi chicken tendon organs and at their interface with muscle fibers and adjoining tendinous structures. Am J Anat 188:239–248Google Scholar
  82. Maier A, Zak R (1990a) Arrangement of cytoskeletal filaments at the equator of chicken intrafusal muscle fibers. Histochemistry 93:423–428Google Scholar
  83. Maier A, Zak R (1990b) Presence in chicken tibialis anterior and extensor digitorum longus muscle spindles of reactive and unreactive intrafusal fibers after incubation with monoclonal antibodies against myosin heavy chains. Am J Anat 187:338–346Google Scholar
  84. Maier A, DeSantis M, Eldred E (1971) Absence of muscle spindles in avian extraocular muscles. Exp Eye Res 12:251–253Google Scholar
  85. Maier A, Eldred E, Edgerton VR (1972) Types of muscle fibers in the extraocular muscles of birds. Exp Eye Res 13:255–265Google Scholar
  86. Maier A, DeSantis M, Eldred E (1974) The occurrence of muscle spindles in extraocular muscles of various vertebrates. J Morphol 143:397–408Google Scholar
  87. Maier A, Simpson DR, Edgerton VR (1976) Histological and histochemical comparisons of muscle spindles in three hind limb muscles of the guinea pig. J Morphol 148:185–191Google Scholar
  88. Maier A, Gambke B, Pette D (1988) Immunohistochemical demonstration of embryonic myosin heavy chains in adult mammalian intrafusal fibers. Histochemistry 88:267–271Google Scholar
  89. Manzij SF, Sytsch WF (1978) Zur Morphologie sensorischer intramuskulärer Innervation der Flügelmuskeln bei den Vögeln. Zool Jb Anat 100:3–19Google Scholar
  90. Matthews PBC (1964) Muscle spindles and their motor control. Physiol Rev 44:219–288Google Scholar
  91. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Williams & Wilkins, BaltimoreGoogle Scholar
  92. Matthews PBC (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30Google Scholar
  93. Mayne R, Sanderson RD (1985) The extracellular matrix of skeletal muscle. Coll Relat Res 5:449–468Google Scholar
  94. Milburn A (1973) The early development of muscle spindles in the rat. J Cell Sci 12:175–195Google Scholar
  95. Milburn A (1984) Stages in the development of cat muscle spindles. J Embryol Exp Morphol 82:177–216Google Scholar
  96. Miller TW, Hikida RS (1986) Effects of short-term denervation on avian muscle spindle structure. Acta Neuropathol 70:127–134Google Scholar
  97. Mumenthaler M, Engel WK (1961) Cytological localization of cholinesterase in developing chick embryo skeletal muscle. Acta Anat 47:274–299Google Scholar
  98. Ovalle WK (1976) Fine structure of the avian muscle spindle capsule. Cell Tissue Res 166:285–298Google Scholar
  99. Ovalle WK (1978) Histochemical dichotomy of extrafusal and intrafusal fibers in an avian slow muscle. Am J Anat 152:587–597Google Scholar
  100. Ovalle WK (1989) Ultrastructural morphometry of amphibian and avian intrafusal muscle fibers. Anat Rec 223:86AGoogle Scholar
  101. Ovalle WK, Dow PR (1983) Comparative ultrastructure of the inner capsule of the muscle spindle and the tendon organ. Am J Anat 166:343–357Google Scholar
  102. Palmieri G (1965) Sulla presenca di fusi neuro-muscolari nei muscoli oculari estrinseci di alcuni mammiferi ed ucelli. Biochim Biol Sperim 4:65–72Google Scholar
  103. Peck D, Buxton DF, Nitz A (1984) A comparison of spindle concentrations in large and small muscles acting in parallel combinations. J Morphol 180:243–252Google Scholar
  104. Rebollo MA, DeAnda G (1967a) The neuromuscular spindles in the adult chicken. II. Histochemistry Acta Anat 67:595–608Google Scholar
  105. Rebollo MA, DeAnda G (1967b) Morphology of neuromuscular spindles in the chicken during development. Acta Neurol Latino 13:150–155Google Scholar
  106. Regaud C, Favre M (1904) Les terminaisons nerveuses et les organes nerveux sensitifs de'appareil locomoteur. I. Les terminaisons nerveuses et les organes nerveux sensitifs des muscles strié squelettaux. Rev Gén Histol 11:1–140Google Scholar
  107. Richmond FJR, Abrahams VC (1975) Morphology and distribution of muscle spindles in dorsal muscles of the cat neck. J Neurophysiol 38:1322–1339Google Scholar
  108. Rogers SL (1982) Muscle spindle formation and differentiation in regenerating rat muscle grafts. Dev Biol 94:265–283Google Scholar
  109. Rosser BWC, George JC (1985) An exceptionally high density of muscle spindles in a slow-tonic pigeon muscle. Anat Rec 212:118–122Google Scholar
  110. Rotundo RL (1984) Purification and properties of the membranebound form of acetylcholinesterase from chicken brain. Evidence for two distinct polypeptide chains. J Biol Chem 259:13186–13194Google Scholar
  111. Saglam M (1968) Morphologische und quantitative Untersuchungen über die Muskelspindeln in der Nackenmuskulatur (M. biventer cervicis, M. rectus capitis dorsalis und M. rectus capitis lateralis) des Buntund Blutspechtes. Acta Anat 69:87–104Google Scholar
  112. Schröder JM (1974) The fine structure of deand reinnervated muscle spindles. I. The increase, atrophy and “hypertrophy” of intrafusal muscle fibers. Acta Neuropathol 30:109–128Google Scholar
  113. Shanta TR, Golarz MN, Bourne GH (1968) Histological and histochemical observations on the capsule of the muscle spindle in normal and denervated muscle. Acta Anat 69:632–646Google Scholar
  114. Steinbach MJ (1992) The need for eye muscle proprioception. In: Jami L, Pierrot-Deseilligny E (eds) Muscle afferents and spinal control of movements. Pergamon Press (in press)Google Scholar
  115. Soukup T, Pedrosa F, Thornell LE (1990) Influence of neonatal motor denervation on expression of myosin heavy chain isoforms in rat muscle spindles. Histochemistry 94:245–256Google Scholar
  116. Swasdison S, Mayne R (1989) Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res 257:537–543Google Scholar
  117. Sweeney LJ, Zak R, Manasek FJ (1987) Transitions in cardiac isomyosin expression during differentiation of the embryonic chick heart. Circ Res 61:287–295Google Scholar
  118. Tello JF (1922) Die Entstehung der motorischen und sensiblen Nervenendigungen. Z Anat Entwicklungsgesch 64:348–440Google Scholar
  119. Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502Google Scholar
  120. Timpl R, Dziadek M (1986) Structure, development and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112Google Scholar
  121. Toutant JP (1982) Influence du type d'innervation des fibres musculaires sur l'aquisition des propriétés de l'ATPase myofibrillaire. Reprod Nutr Dev 22:243–249Google Scholar
  122. Toutant M (1981) Morphological differentiation and histochemical differentiation of intrafusal fibres in chick complexus muscle. ICRS Med Sci 9:913–914Google Scholar
  123. Toutant M (1982) Quantitative and histochemical aspects of the differentiation of muscle spindles in the anterior latissimus dorsi of the developing chick. Anat Embryol 163:475–485Google Scholar
  124. Toutant M, Bourgeois JP, Rouaud R, Toutant JP (1981) Morphological and histochemical differentiation of intrafusal fibres in the posterior latissimus dorsi muscle of the developing chick. Anat Embryol 162:325–343Google Scholar
  125. Uehara Y (1978) Occurrence of an “extrafusal muscle fiber” in the spindle capsule of normal adult Zebra finches: An electron microscopical study. J Electron Microsc 27:293–299Google Scholar
  126. Vegetti A (1965) Distribuzione e frequenza dei fusi neuromusculari nei muscoli masticatori de Anitra. Atti Soc Ital Sci Vet 19:349–351Google Scholar
  127. Vegetti A, Palmieri G (1971) Sulla distribuzione, e morphologia dei fusi neuromuscolari nei muscoli masticatori di alcuni ucelli domestici. Riv Biol 64:215–239Google Scholar
  128. Voss H (1971) Tabelle der absoluten und relativen Muskelspindelzahlen der menschlichen Skelettmuskulatur. Anat Anz 129:562–572Google Scholar
  129. van der Wal (1988) The organization of the substrate of proprioception in the elbow region of the rat. Thesis, Rijksuniversiteit Limburg, Maastricht, NetherlandsGoogle Scholar
  130. Walro JM, Hikida RS (1990) Myosin heavy chain expression and patterns of innervation in avian muscle spindles. Anat Rec 226:107AGoogle Scholar
  131. Walro JM, Hikida RS, Hather BM (1984) Quantification and origin of spindles in orthotopic and heterotopic grafts of avian muscles. Cell Tissue Res 235:515–519Google Scholar
  132. Walro JM, Kucera J, Narvy R (1991) Non-neural and neural expression of myosin heavy chains by regenerated intrafusal fibers of rats. Neurosci Lett 122:213–217Google Scholar
  133. Windhorst U, Hamm TM, Stuart DG (1989) On the function of muscle and reflex partitioning. Behav Brain Sci 12:629–645Google Scholar
  134. Yellin H (1969) A histochemical study of muscle spindles and their relationship to extrafusal fiber types in the rat. Am J Anat 125:31–46Google Scholar
  135. Zelena J (1957) The morphogenetic influence of innervation on the ontogenetic development of muscle spindles. J Embryol Exp Morphol 5:283–292Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Alfred Maier
    • 1
  1. 1.Department of Cell BiologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations