Journal of Low Temperature Physics

, Volume 67, Issue 5–6, pp 475–492 | Cite as

The critical curve in an antiferromagnetic superconductor with nonmagnetic impurities

  • H. Chi
  • A. D. S. Nagi


The critical curve of a transition of the second kind in an antiferromagnetic superconductor (AFS) with nonmagnetic impurities has been studied. The AFS is described by using the mean-field model given by Nass, Levin, and Grest and assuming a one-dimensional electron band. We find that the points on the critical curve satisfy the thermodynamic stability condition for 0≤α0≤5.04 and 0.49≤H0≤1.64.Here α1 is the inverse lifetime of a conduction electron for nonmagnetic impurity scattering,H Q is the antiferromagnetic molecular field, Δ0 is the zero-temperature order parameter of a superconductor in the absence ofH Q and impurities. Further, α and H denote the values of these quantities for points on the critical curve. For α0>5.04 and H0>1.64, the phase transition from the superconducting to the normal state is always of the second kind. Some thermal properties of the system near the critical curve have also been investigated and we find that these depends dramatically on the impurity concentration.


Phase Transition Stability Condition Thermal Property Magnetic Material Conduction Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. K. Shenoy, B. D. Dunlop, and F. Y. Fradin, eds.,Ternary Superconductors (North-Holland, Amsterdam, 1981).Google Scholar
  2. 2.
    Ø. Fischer and M. B. Maple, eds.,Superconductivity in Ternary Compounds I, II (Springer, Berlin, 1982).Google Scholar
  3. 3.
    K. Machida,Appl. Phys. A 35, 193 (1984).Google Scholar
  4. 4.
    K. N. Shrivastava and K. P. Sinha,Phys. Rep. 115, 93 (1984).Google Scholar
  5. 5.
    T. Matsubara and A. Kotani, eds.,Superconductivity in Magnetic and Exotic Materials (Springer, Berlin, 1984), pp. 104–134.Google Scholar
  6. 6.
    K. Levin, M. J. Nass, and C. Ro, inSuperconductivity in Magnetic and Exotic Materials, T. Matsubara and A. Kotani eds. (Springer, Berlin, 1984), pp. 104–111.Google Scholar
  7. 7.
    M. Ishikawa and Ø. Fischer,Solid State Commun. 24, 747 (1977).Google Scholar
  8. 8.
    W. A. Fertig, D. C. Johnston, L. E. DeLong, R. W. McCallum, M. B. Maple, and B. T. Matthias,Phys. Rev. Lett. 38, 987 (1977).Google Scholar
  9. 9.
    H. C. Ku, B. T. Matthias, and H. Bartz,Solid State Commun. 32, 937 (1978).Google Scholar
  10. 10.
    A. Thoma, H. Adrian, and A. Meinelt,J. Low Temp. Phys. 64, 329 (1986).Google Scholar
  11. 11.
    M. J. Nass, K. Levin, and G. S. Grest,Phys. Rev. Lett. 46, 614 (1981).Google Scholar
  12. 12.
    M. J. Nass, K. Levin, and G. S. Grest,Phys. Rev. B 25, 4541 (1982).Google Scholar
  13. 13.
    Y. Suzumura and A. D. S. Nagi,Phys. Rev. B 24, 5103 (1981).Google Scholar
  14. 14.
    Y. Suzumura and A. D. S. Nagi,J. Low Temp. Phys. 46, 397 (1982).Google Scholar
  15. 15.
    K. Ishino and Y. Suzumura,Prog. Theor. Phys. 68, 1009 (1982).Google Scholar
  16. 16.
    Y. Suzumura and K. Ishino,Solid State Commun. 45, 637 (1983).Google Scholar
  17. 17.
    Y. Suzumura and K. Ishino,Prog. Theor. Phys. 70, 654 (1983).Google Scholar
  18. 18.
    Y. Okabe and A. D. S. Nagi,Phys. Rev. B 28, 6290 (1983).Google Scholar
  19. 19.
    C. Ro and K. Levin,Phys. Rev. B 29, 6155 (1984).Google Scholar
  20. 20.
    Y. Suzumura, Y. Okabe, and K. Ishino,Prog. Theor. Phys. 74, 211 (1985).Google Scholar
  21. 21.
    M. Prohammer and E. Schachinger,Solid State Commun. 58, 649 (1986).Google Scholar
  22. 22.
    H. Chi and A. D. S. Nagi,Solid State Commun. 57, 491 (1986).Google Scholar
  23. 23.
    E. M. Lifshitz and L. P. Pitvaevskii,Statistical Physics, 3rd ed., Part 1 (Pergamon, Oxford, 1980), Chapter XIV.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • H. Chi
    • 1
  • A. D. S. Nagi
    • 1
  1. 1.Guelph-Waterloo Program for Graduate Work in Physics, Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations