Journal of Low Temperature Physics

, Volume 67, Issue 5–6, pp 421–440 | Cite as

Theory of spin diffusion of dilute, polarized fermions for all temperatures

  • J. W. Jeon
  • W. J. Mullin


We describe the solution of the transport equation over the entire range of temperature from the Boltzmann to fully degenerate regimes for dilute, polarized Fermi systems. Since spin-polarized systems can show unusual quantum effects involving spin rotation in both Boltzmann and degenerate regimes, a solution of the kinetic equation over the whole temperature range is expected to be useful. Our results for the longitudinal spin diffusion coefficient reduce to the known limits in the Boltzmann and degenerate regimes and also to the expected form in the peculiar high-polarization regime in which one spin species is degenerate and the other described by classical statistics (the degenerate-classical case). We derive numerical results for the spin-rotation quality parameter μ over the full temperature range. Unlike experimental results that show μ diminishing anomalously as the temperature decreases toward the degenerate regime, our value for μ is monotonically increasing. However, the transition to the degenerate-classical regime is found to occur with a rounded-step jump in μ as a function of polarization.


Diffusion Coefficient Kinetic Equation Entire Range Transport Equation Quality Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Bashkin and A. E. Meyerovich,Adv. Phys. 30, 1 (1981).Google Scholar
  2. 2.
    A. J. Leggett,J. Phys. C 12, 448 (1970).Google Scholar
  3. 3.
    C. Lhuillier and F. Laloë,J. Phys. (Paris)43, 197; 225 (1982).Google Scholar
  4. 4.
    K. Miyake, W. J. Mullin, and P. C. E. Stamp,J. Phys. (Paris)46, 663 (1985).Google Scholar
  5. 5.
    G. Tastevin, P. J. Nacher, M. Leduc, and F. Laloë,J. Phys. Lett. (Paris)46, L249 (1985).Google Scholar
  6. 6.
    W. J. Gully and W. J. Mullin,Phys. Rev. Lett. 52, 1810 (1984).Google Scholar
  7. 7.
    A. E. Meyerovich,Phys. Lett. 69A, 279 (1978).Google Scholar
  8. 8.
    W. J. Mullin and K. Miyake,J. Low Temp. Phys. 63, 479 (1986).Google Scholar
  9. 9.
    G. Baym and C. Pethick, inPhysics of Liquid and Solid Helium, K. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), Vol. 2, Chapter 1.Google Scholar
  10. 10.
    W. J. Mullin and K. Miyake,J. Low Temp. Phys. 53, 313 (1983).Google Scholar
  11. 11.
    G. Baym and C. Ebner,Phys. Rev. 170, 346 (1968).Google Scholar
  12. 12.
    A. E. Meyerovich,Phys. Lett. 107A, 177 (1985).Google Scholar
  13. 13.
    E. P. Bashkin,Phys. Rev. Lett. 55, 1426 (1985).Google Scholar
  14. 14.
    V. P. Silin,Vvedenie v Kineticheskuyu Teoriyu Gasov (Nauka, Moscow, 1971).Google Scholar
  15. 15.
    A. E. Ruckenstein and L. P. Levy,Phys. Rev. Lett. 55, 1427 (1985).Google Scholar
  16. 16.
    K. Miyake, personal communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • J. W. Jeon
    • 1
  • W. J. Mullin
    • 1
  1. 1.Laboratory for Low Temperature Physics, Hasbrouck Lab, Department of PhysicsUniversity of MassachusettsAmherst

Personalised recommendations