Computational prediction of trends in the selectivity of macrocyclic receptors for anions

  • Karl Sohlberg
  • Bryon J. Tarbet
Article

Abstract

We seek a theoretical method which is capable of predicting trends in the binding affinity of macrocyclic receptors for various anions in aqueous solution. Success has been achieved in this endeavor by employing semiempirical methodology to compute the energetics of certain exchange reactions whereby anions are exchanged between a macrocyclic receptor and a cluster of water molecules. The method is computationally tractable with workstation-class computing hardware and is applicable to a wide range of guest/host systems. Computations for several anion/receptor systems are reported.

Key words

Anion-receptors selectivity semiempirical computations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, and D. Sen:Chem. Rev. 85, 271 (1985).Google Scholar
  2. 2.
    J.S. Bradshaw, R.M. Izatt, R.L. Bruening, and J.J. Christensen:U.S. Patent 4,943,375 (Jul. 24, 1990).Google Scholar
  3. 3.
    R.M. Izatt, K. Pawlak, J.S. Bradshaw, and R.L. Bruening:Chem. Rev. 91, 1721 (1991).Google Scholar
  4. 4.
    C.J. Pedersen:J. Am. Chem. Soc. 89, 7017 (1967).Google Scholar
  5. 5.
    C.H. Park and H.E. Simmons:J. Am. Chem. Soc. 90, 2431 (1968).Google Scholar
  6. 6.
    X. Yang, C.B. Knobler, Z. Zheng, and M.F. Hawthorne:J. Am. Chem. Soc. 116, 7142 (1994).Google Scholar
  7. 7.
    D.E. Kaufmann and A. Otten:Angew. Chem. Int. Ed. Engl. 33, 1832 (1994).Google Scholar
  8. 8.
    T.P. Lybrand, J.A. McCammon, and G. Wipff:Proc. Natl. Acad. Sci. U.S.A. 83, 833 (1986).Google Scholar
  9. 9.
    B. Owenson, R.D. Macelroy, and A. Pohorille:J. Mol. Struct. THEOCHEM 179, 467 (1988).Google Scholar
  10. 10.
    B. Owenson, R.D. Macelroy, and A. Pohorille:J. Am. Chem. Soc. 110, 6992 (1988).Google Scholar
  11. 11.
    G. Wipff and J.-M. Wurtz:New J. Chem. 13, 807 (1989).Google Scholar
  12. 12.
    S. Jacobson and R. Pizer:J. Am. Chem. Soc. 115, 11216 (1993).Google Scholar
  13. 13.
    R.B. Shirts and L.D. Stolworthy:J. Incl. Phenom. 20, 297 (1995).Google Scholar
  14. 14.
    A.K. Rappe and W.A. Goddard:J. Phys. Chem. 95, 3358 (1991).Google Scholar
  15. 15.
    Z. Su:J. Comput. Chem. 14, 1036 (1993).Google Scholar
  16. 16.
    L. von Szentpály and I.L. Shamovsky:J. Molec. Struct. THEOCHEM 305, 249 (1994).Google Scholar
  17. 17.
    U. Sternberg, F.T. Koch, and M. Möllhoff:J. Comput. Chem. 15, 524 (1994).Google Scholar
  18. 18.
    D.B. Kireev, V.I. Fetisov, and N.S. Zefirov:J. Mol. Struct. THEOCHEM 304, 143 (1994).Google Scholar
  19. 19.
    G. Wipff, P. Weiner, and P. Kollman:J. Am. Chem. Soc. 104, 3249 (1982).Google Scholar
  20. 20.
    M.A. Thompson, E.D. Glendening, and D. Feller:J. Phys. Chem. 98, 10465 (1994).Google Scholar
  21. 21.
    B.P. Hay, J.R. Rustad, and C.J. Hostetler:J. Am. Chem. Soc. 115, 11158 (1993).Google Scholar
  22. 22.
    B.P. Hay and J.R. Rustad:J. Am. Chem. Soc. 116, 6316 (1994).Google Scholar
  23. 23.
    R.D. Hancock:Acc. Chem. Res. 23, 253 (1990).Google Scholar
  24. 24.
    E. Graf and J-M. Lehn:J. Am. Chem. Soc. 98, 6403 (1976).Google Scholar
  25. 25.
    A. Pullman, C. Giessner-Prettre, and Y.V. Kruglyak:Chem. Phys. Lett. 35, 156 (1975).Google Scholar
  26. 26.
    E.D. Glendening, D. Feller, and M.A. Thompson:J. Am. Chem. Soc. 116, 10657 (1994).Google Scholar
  27. 27.
    A.R. Katritzky, N. Malhotra, R. Ramanathan, R.C. Kemerait, Jr., J.A. Zirmnerman, and J.R. Eyler:Rapid Commun. Mass Spectrosc. 6, 25 (1992).Google Scholar
  28. 28.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart:J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
  29. 29.
    T. Yamabe, K. Hori, K. Akagi, and K. Fukui:Tetrahedron 35, 1065 (1979)Google Scholar
  30. 30.
    K. Hori, H. Yamada, and T. Yamabe:Tetrahedron 39, 67 (1983).Google Scholar
  31. 31.
    I.N. Levine:Quantum Chemistry, Prentice Hall, Englewood Cliffs, NJ, Ch. 17 (1991).Google Scholar
  32. 32.
    ZINDO, J. Ridley and M. Zerner:Theoret. Chim. Acta 32, 111 (1973). J. Ridley and M. Zerner:Theoret. Chim. Acta 42, 223 (1976), as implemented in the CAChe Worksystem, CAChe Scientific, Inc. Beaverton, OR, U.S.A.Google Scholar
  33. 33.
    Z. Zheng, C.B. Knobler, C.E. Curtis, and M.F. Hawthorne:Inorg. Chem. 34, 432 (1995).Google Scholar
  34. 34.
    K. Worm, F.P. Schmidtchen, A. Schier, A. Schäfer, and M. Hesse:Angew. Chem. Int. Ed. Engl. 33, 327 (1994).Google Scholar
  35. 35.
    F.P. Schmidtchen:Angew. Chem. Int. Ed. Engl. 16, 720 (1977).Google Scholar
  36. 36.
    E. Graf and J-M. Lehn:J. Am. Chem. Soc. 97, 5022 (1975).Google Scholar
  37. 37.
    S.D. Reilly, G.R.K. Khalsa, D.K. Ford, J.R. Brainard, B.P. Hay, and P.H. Smith:Inorg. Chem. 34, 569 (1995).Google Scholar
  38. 38.
    E.D. Glendening and D. Feller:J. Phys. Chem. 99, 3060 (1995).Google Scholar
  39. 39.
    Editor V3.6, a part of the functionality of the CAChe Worksystem, CAChe Scientific, Inc. Beaverton, OR. U.S.A.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Karl Sohlberg
    • 1
  • Bryon J. Tarbet
    • 1
  1. 1.I. B. C. Advanced TechnologiesAmerican ForkUSA

Personalised recommendations