Skip to main content
Log in

Abstract

Researchers have devised several procedures for synthesizing transition metal ion (TMI) complexes in zeolite cavities and channels. Two main routes have been envisaged: synthesis with a preformed complex and complex assembly in the zeolite. An overview of the different preparation methods and of the TMI-complexes, encaged in zeolites, is given. These complexes have been mainly studied in zeolite Y. The zeolite is a non-coordinating anion, a solvent, or a ligand. It reduces the mobility of the complexes and provides chemisorption sites. Future developments will comprise the use of widepore zeolites and zeotypes (e.g., VPI-5, MCM-41, hexagonal faujasite) and the design of optically active surfaces. Furthermore, there is a need for quantification in general and for selectively synthesizing one type of complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lunsford,ACS Symp. Ser.,40, 473 (1977).

    Google Scholar 

  2. W. Mortier and R. Schoonheydt,Prog. Solid State Chem.,16, 1 (1985);

    Google Scholar 

  3. R. Schoonheydt, D. Roodhooft, and H. Leeman,Zeolites,7, 412 (1987).

    Google Scholar 

  4. K. Klier, R. Kellerman, and P. Hutta,J. Chem. Phys.,61, 4224 (1974);

    Google Scholar 

  5. R. Kellerman and K. Klier,ACS Symp. Ser.,40, 120 (1977).

    Google Scholar 

  6. K. Balkus, C. Hargis, and S. Kowalak,ACS Symp. Ser.,499, 347 (1992).

    Google Scholar 

  7. S. Kowalak and K. Balkus,Collect. Czech. Chem. Commun.,57, 774 (1992).

    Google Scholar 

  8. A. Borvornwattananont and T. Bein,J. Phys. Chem.,96, 9447 (1992);

    Google Scholar 

  9. A. Borvornwattananont, K. Moller, and T. Bein,J. Phys. Chem.,96, 6713 (1992).

    Google Scholar 

  10. W. De Wilde, R. Schoonheydt, and J. Uytterhoeven,ACS Symp. Ser. 40, 132 (1977).

    Google Scholar 

  11. J. Lunsford and E. Vansant,J. Chem. Soc., Faraday Trans. II,69, 1028 (1973).

    Google Scholar 

  12. G. Bergeret, P. Gallezot, and B. Imelik,J. Phys. Chem.,85, 411 (1981);

    Google Scholar 

  13. G. Bergeret, T. Tri and P. Gallezot,J. Phys. Chem.,87, 411 (1983).

    Google Scholar 

  14. D. Flentge, J. Lunsford, P. Jacobs, and J. Uytterhoeven,J. Phys. Chem.,79, 354 (1975).

    Google Scholar 

  15. E. Vansant and J. Lunsford,J. Phys. Chem.,76, 2860 (1972).

    Google Scholar 

  16. E. Vansant and J. Lunsford,Adv. Chem. Ser.,121, 441 (1973).

    Google Scholar 

  17. R. Howe and J. Lunsford,J. Am. Chem. Soc.,97, 5156 (1975).

    Google Scholar 

  18. C. Naccache and Y. Ben Taarit,Chem. Phys. Lett.,11, 11 (1971).

    Google Scholar 

  19. P. Dai and J. Lunsford,Inorg. Chem.,19, 262 (1980).

    Google Scholar 

  20. Y. Ukisu, A. Kazusaka, and M. Nomura,J. Mol. Catal.,70, 165 (1991).

    Google Scholar 

  21. Y. Yamada,Bull. Chem. Soc. Japan,43, 2661 (1970).

    Google Scholar 

  22. Y. Yamada,Bull. Chem. Soc. Japan,45, 64 (1972).

    Google Scholar 

  23. R. Schoonheydt, D. Van Wouwe, and H. Leeman,Zeolites,2, 109 (1982).

    Google Scholar 

  24. R. Schoonheydt, D. Van Wouwe, and M. Van Hove,J. Colloid Interface Sci.,83, 279 (1981).

    Google Scholar 

  25. R. Schoonheydt, D. Van Overloop, M. Van Hove, and J. Verlinden,Clays and Clay Minerals,32, 74 (1984).

    Google Scholar 

  26. R. Schoonheydt, D. Van Wouwe, and H. Leeman,J. Chem. Soc., Faraday Trans. I,76, 2519 (1980).

    Google Scholar 

  27. R. Schoonheydt, D. Van Wouwe, M. Van Hove, E. Vansant, and J. Lunsford,J. Chem. Soc., Chem. Comm., 33 (1980).

  28. I. Bresinska and R. Drago,Stud. Surf. Sci. Catal.,68, 101 (1991).

    Google Scholar 

  29. R. Taylor, R. Drago, and J. George,J. Am. Chem. Soc.,111, 6610 (1989).

    Google Scholar 

  30. R. Drago, I. Bresinska, J. George, K. Balkus, and R. Taylor,J. Am. Chem. Soc.,110, 304 (1988).

    Google Scholar 

  31. R. Taylor, R. Drago, and J. Hage,Inorg. Chem.,31, 253 (1992).

    Google Scholar 

  32. R. Schoonheydt, P. Peigneur, and J. Uytterhoeven,J. Chem. Soc., Faraday Trans. I,74, 2550 (1978);

    Google Scholar 

  33. P. Peigneur, Ph.D. Thesis, K. U. Leuven (1976);

  34. P. Peigneur, J. Lunsford, W. De Wilde, and R. Schoonheydt,J. Phys. Chem.,81, 1179 (1977).

    Google Scholar 

  35. R. Schoonheydt and J. Pelgrims,J. Chem. Soc., Dalton Trans., 914 (1981).

  36. R. Howe and J. Lunsford,J. Phys. Chem.,79, 1836 (1975).

    Google Scholar 

  37. P. Dutta and R. Zaykoski,J. Phys. Chem.,93, 2603 (1989).

    Google Scholar 

  38. R. Howe and J. Lunsford, inProc. 6th Int. Congress on Catalysis, G. Bond, P. Wells, and F. Tompkins (Eds), The Chemical Society, London,1, p 540 (1976)

    Google Scholar 

  39. P. Dutta and C. Bowers,Langmuir,7, 937 (1991).

    Google Scholar 

  40. W. Lubitz, C. Winscom, H. Diegruber, and R. Möseler,Z. Naturforsch.,42a, 970 (1987).

    Google Scholar 

  41. H. Diegruber and P. Plath,Stud. Surf. Sci. Catal.,12, 23 (1982).

    Google Scholar 

  42. J. Strutz, H. Diegruber, N. Jaeger, and R. Möseler,Zeolites,3, 102 (1983).

    Google Scholar 

  43. H. Diegruber, Ph.D. Thesis, Universität Bremen (1984).

  44. W. De Wilde and J. Lunsford,Inorg. Chem. Acta.,34, L229 (1979).

    Google Scholar 

  45. W. De Wilde, G. Peeters, and J. Lunsford,J. Phys. Chem.,84, 2306 (1980).

    Google Scholar 

  46. W. Quayle and J. Lunsford,Inorg. Chem.,21, 97 (1982).

    Google Scholar 

  47. W. Quayle, G. Peeters, G. De Roy, E. Vansant, and J. Lunsford,Inorg. Chem.,21, 2226 (1982).

    Google Scholar 

  48. K. Mizuno and J. Lunsford,Inorg. Chem.,22, 3484 (1983).

    Google Scholar 

  49. K. Mizuno, S. Imamura, and J. Lunsford,Inorg. Chem.,23, 3510 (1984).

    Google Scholar 

  50. S. Imamura and J. Lunsford,Langmuir,1, 326 (1985).

    Google Scholar 

  51. M. Borja and P. Dutta,Nature,362, 43 (1993).

    Google Scholar 

  52. K. Balkus, I. Bresinska, and S. Young, inProc. 9th. Int. Zeolite Conference, R. von Ballmoos, J. Higgins, and M. Treacy (Eds), Butterworth-Heinemann, Stoneham MA, p 193 (1991).

    Google Scholar 

  53. L. Rankel and E. Valyocsik,U. S. Patent 4,388,285 (1983).

  54. K. Maruszewski, D. Strommen, K. Handrich, and J. Kincaid,Inorg. Chem.,30, 4579 (1991);

    Google Scholar 

  55. K. Maruszewski, D. Strommen, and J. Kincaid,J. Am. Chem. Soc.,115, 8345 (1993).

    Google Scholar 

  56. B. Durham, S. Wilson, D. Hodgson, and T. Meyer,J. Am. Chem. Soc.,102, 600 (1980).

    Google Scholar 

  57. P. Dutta and J. Incavo,J. Phys. Chem.,91, 4443 (1987);

    Google Scholar 

  58. J. Incavo and P. Dutta,J. Phys. Chem.,94, 3075 (1990);

    Google Scholar 

  59. W. Turbeville, D. Robins, and P. Dutta,J. Phys. Chem.,96, 5024 (1992).

    Google Scholar 

  60. N. Herron,Inorg. Chem.,25, 4714 (1986).

    Google Scholar 

  61. F. Bedioui, E. De Boysson, J. Devynck, and K.J. Balkus,J. Chem. Soc., Faraday Trans.,87, 3831 (1991).

    Google Scholar 

  62. D. De Vos, F. Thibault-Starzyk, and P. Jacobs,Angew. Chemie, Int. Engl. Ed.,33, 431 (1994).

    Google Scholar 

  63. C. Bowers and P. Dutta,J. Catal.,122, 271 (1990).

    Google Scholar 

  64. L. Gaillon, N. Sajot, F. Bedioui, J. Devynck, and K. Balkus,J. Electroanal. Chem.,345, 157 (1993).

    Google Scholar 

  65. K. Balkus, A. Welch, and B. Gnade,Zeolites,10, 722 (1990).

    Google Scholar 

  66. S. Kowalak, R. Weiss, and K. Balkus,J. Chem. Soc., Chem. Commun., 57 (1991).

  67. D. De Vos and P. Jacobs, inProc. 9th Internat. Zeolite Conf., R. Von Ballmoos, J. Higgins, and M. Treacy (Eds), Butterworth-Heinemann, Stoneham MA, p 615 (1991).

    Google Scholar 

  68. A. Zakharov and B. Romanovskii,Vest. Mosk. Univ. Ser. Khim.,20, 94 (1979).

    Google Scholar 

  69. S. Gudkov, E. Shpiro, B. Romanovskii, G. Antoshin, and K. Minachev,Izv. Akad. Nauk SSSR Ser. Khim.,11, 2248 (1980).

    Google Scholar 

  70. G. Meyer, D. Wöhrle, M. Mohl, and G. Schulz-Ekloff,Zeolites,4, 30 (1984).

    Google Scholar 

  71. N. Herron, G. Stucky, and C. Tolman,J. Chem. Soc., Chem. Commun., 1521 (1986).

  72. R. Parton, L. Uytterhoeven, and P. Jacobs,Stud. Surf. Sci. Catal.,59, 395 (1991);

    Google Scholar 

  73. D. Huybrechts, R. Parton, and P. Jacobs,—ibid.,60, 225 (1991);

    Google Scholar 

  74. R. Parton, D. Huybrechts, P. Buskens, and P. Jacobs,—ibid.,65, 47 (1991);

    Google Scholar 

  75. R. Parton, D. De Vos, and P. Jacobs, inZeolite Microporous Solids: Synthesis, Structure and Reactivity, E. Derouane et al. (Eds), Kluwer Academic Publishers, Amsterdam, p 552 (1992).

    Google Scholar 

  76. Z. Weide, Y. Xingkai, and W. Yue,J. Mol. Catal. (China),5, 168 (1991).

    Google Scholar 

  77. K. Balkus, A. Welch, and B. Gnade,J. Incl. Phen. Molec. Recognition Chem.,10, 141 (1991).

    Google Scholar 

  78. E. Shpiro, G. Antoshin, O. Tkachenko, S. Gudkov, B. Romanovskii, and K. Minachev,Stud. Surf. Sci. Catal.,18, 31 (1984).

    Google Scholar 

  79. B. Romanovskii,Acta Phys. Chem.,31, 215 (1985).

    Google Scholar 

  80. N. Herron,J. Coord. Chem.,9, 25 (1988).

    Google Scholar 

  81. E. Ignatzek, P. Plath, and U. Hündorf,Z. Phys. Chem. Leipzig,268, 859 (1987).

    Google Scholar 

  82. A. Zakharov and B. Romanovskii,J. Incl. Phen.,3, 389 (1985).

    Google Scholar 

  83. T. Kimura, A. Fukuoka, and M. Ichikawa,Shokubai,30, 444 (1988).

    Google Scholar 

  84. T. Kimura, A. Fukuoka, and M. Ichikawa,Catal. Lett.,4, 279 (1990).

    Google Scholar 

  85. T. Zakharov, B. Romanovskii, D. Luka, and V. Sokolov,Metalloorg. Khim.,1, 119 (1988).

    Google Scholar 

  86. A. Zakharov,Mendeleev Commun., 80 (1991).

  87. H. Diegruber and P. Plath,Z. Phys. Chem. Leipzig,266, 641 (1985).

    Google Scholar 

  88. G. Schulz-Ekloff, D. Wöhrle, V. Iliev, E. Ignatzek, and A. Andreev,Stud. Surf. Sci. Catal.,46, 315 (1989).

    Google Scholar 

  89. H. Diegruber, P. Plath, G. Schulz-Ekloff, and M. Mohl,J. Mol. Catal.,24, 115 (1984).

    Google Scholar 

  90. B. Romanovskii and A. Gabrielov,J. Mol. Catal.,74, 293 (1992).

    Google Scholar 

  91. M. Tanaka, Y. Sakai, T. Tominaga, A. Fukuoka, T. Kimura, and M. Ichikawa,J. Radioanal. Nucl. Chem. Letters,137, 287 (1989).

    Google Scholar 

  92. F. Bedioui, E. De Boysson, J. Devynck, and K. Balkus,J. Electroanal. Chem.,315, 313 (1991).

    Google Scholar 

  93. V. Iliev, L. Prahov, A. Andreev, E. Ignatzek, and G. Schulz-Ekloff, inProc. 6th Int. Symp. Heterog. Catal., Sofia, Part 2, 79 (1987).

  94. T. Borisova, L. Izmailova, E. Kotov, and B. Romanovskii,Zh. Fiz. Khim.,60, 1195 (1986).

    Google Scholar 

  95. C. Tolman and N. Herron,Catal. Today,3, 235 (1988).

    Google Scholar 

  96. K. Balkus and J. Ferraris,J. Phys. Chem.,94, 8019 (1990).

    Google Scholar 

  97. R. Parton, C. Bezoukhanova, J. Grobet, P. Grobet, and P. Jacobs,Stud. Surf. Sci. Catal.,83, 371 (1994).

    Google Scholar 

  98. M. Ichikawa, T. Kimura, and A. Fukuoka,Stud. Surf. Sci. Catal.,60, 335 (1991).

    Google Scholar 

  99. Y. Chan and R. Wilson,ACS Prepr. Div. Petrol. Chem.,33, 453 (1988).

    Google Scholar 

  100. M. Nakamura, T. Tatsumi, and H. Tominaga,Bull. Chem. Soc. Jpn.,63, 3334 (1990).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Vos, D.E., Knops-Gerrits, P.P., Parton, R.F. et al. Coordination chemistry in zeolites. J Incl Phenom Macrocycl Chem 21, 185–213 (1995). https://doi.org/10.1007/BF00709416

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709416

Keywords

Navigation