Skip to main content
Log in

Absorbed molecules in microporous hosts — Computational aspects

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

This review examines the computational tools that are available for modeling the behavior of absorbed molecules in microporous hosts such as the aluminosilicate zeolites. The role of quantum mechanical methods is briefly discussed, followed by a more detailed examination of approaches that utilize forcefields for both the zeolite host, itself, and the host-guest interactions. These approaches include molecular dynamics and Monte Carlo simulations. Several examples are presented, focusing on the behavior of benzene absorbed in zeolites belonging to the faujasite family. The development of an appropriate forcefield is described, and the utilization of this forcefield to study the structure, energetics, and dynamics of benzene in siliceous faujasite, Na-Y and sodium Na-X is explored. The results are compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. F. van Gusteren and H. J. C. Berendsen,Angew. Chem. Int. Ed. Engl.,29, 992 (1990).

    Google Scholar 

  2. C. R. A. Catlow, J. D. Gale, and R. G. Bell,J. Mater. Chem.,4, 781 (1994).

    Google Scholar 

  3. Modeling of Structure and Reactivity in Zeolites, C. R. A. Catlow (Ed), Academic Press, London, San Diego (1992).

    Google Scholar 

  4. Computer Simulation of Solids, C. R. A. Catlow and W. C. Mackrodt (Eds), Lecture Notes in Physics, Springer-Verlag, Berlin, Vol.166 (1982).

    Google Scholar 

  5. S. C. Parker and G. D. Price, inAdvances in Solid State Chemistry, C. R. A. Catlow (Ed), JAI Press, London, Vol.1 (1989).

    Google Scholar 

  6. A. Redondo and P. J. J. Hay,J. Phys. Chem.,97, 11754 (1993).

    Google Scholar 

  7. A. E. Alvarado-Swaisgood, M. K. Barr, P. J. Hay, and A. Redondo,J. Phys. Chem.,95, 10031 (1991).

    Google Scholar 

  8. J. B. Nicholas, R. E. Winans, R. J. Harrison, L. E. Iton, L. A. Curtiss, and A. J. J. Hopfinger,J. Phys. Chem.,96, 10247 (1992).

    Google Scholar 

  9. J. Sauer,Chem. Rev.,89, 199 (1989).

    Google Scholar 

  10. G. J. Kramer, R. A. van Santen, C. A. Emeis, and A. K. Nowak,Nature,363, 529 (1993).

    Google Scholar 

  11. H. V. Brand, L. A. Curtiss, and L. E. Iton,J. Phys. Chem.,96, 7725 (1992).

    Google Scholar 

  12. S. J. Cook, A. K. Chakraborty, A. T. Bell, and D. N. Theodorou,J. Phys. Chem.,97, 6679 (1993).

    Google Scholar 

  13. S. P. Greatbanks, P. Sherwood, and I. H. Hillier,J. Phys. Chem.,98, 8134 (1994).

    Google Scholar 

  14. J. C. White and A. C. Hess,J. Phys. Chem. 97, 8703 (1993).

    Google Scholar 

  15. J. C. White and A. C. Hess,J. Phys. Chem. 97, 6398 (1993).

    Google Scholar 

  16. E. Apra, R. Dovesi, C. Freyriafava, and C. Pisani,Modeling and Simulation in Materials Science and Engineering,1, 297 (1993).

    Google Scholar 

  17. J. B. Nicholas and A. C. Hess,J. Am. Chem. Soc.,116, 5428 (1994).

    Google Scholar 

  18. T. S. Bush, J. D. Gale, C. R. A. Catlow, and P. D. Battle,J. Mater. Chem.,4, 831, (1994).

    Google Scholar 

  19. J. D. Gale and N. J. Henson,J. Chem. Soc., Faraday Trans.,90, 3175 (1994).

    Google Scholar 

  20. R. G. Gordon and Y. S. Kim,J. Chem. Phys.,56, 3122, (1976).

    Google Scholar 

  21. K. De Boer, A. P. J. Jansen, and R. A. van Santen,Chem. Phys.,223, 46 (1994)

    Google Scholar 

  22. B. W. K. van Beest, G. J. Kramer, and R. A. van Santen,Phys. Rev. Lett.,64, 1955 (1990).

    Google Scholar 

  23. R. A. Jackson and C. R. A. Catlow,Mol. Simul.,1, 207 (1988).

    Google Scholar 

  24. P. P. Ewald,Ann. Phys. (Leipzig),64, 1 (1921).

    Google Scholar 

  25. B. G. Dick and A. W. Overhauser,Phys. Rev.,112, 90 (1958).

    Google Scholar 

  26. E. de Vos Burchart, V. A. Verheij, H. van Bekkum, and B. van de Graaf,J. Chem. Soc., Faraday Trans.,88, 2761 (1992).

    Google Scholar 

  27. J. B. Nicholas, A. J. Hopfinger, F. R. Trow, and L. E. Iton,J. Am. Chem. Soc.,113, 4792 (1991).

    Google Scholar 

  28. A. G. Bezus, A. V. Kiselev, A. A. Lopatkin, and P. Q. Du,J. Chem. Soc., Faraday Trans. II,74, 367 (1978).

    Google Scholar 

  29. J. C. Slater and J. G. Kirkwood,Phys. Rev.,37, 682 (1993).

    Google Scholar 

  30. R. Q. Snurr, A. T. Bell and D. N. Theodorou, inProc. 9th Int. Zeolite Conference, Montreal 1992, R. von Ballmoos, J. B. Higgins, and M. M. J. Treacy (Eds), Butterworth-Heinemann, Stoneham, MA, Vol. 2, p 71 (1993).

    Google Scholar 

  31. N. J. Henson, M. Stockenhuber, A. K. Cheetham, and J. A. Lercher, to be published.

  32. M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids, Oxford University Press, Oxford, U. K. (1987).

    Google Scholar 

  33. P. A. Wright, J. M. Thomas, A. K. Cheetham, and A. K. Nowak,Nature,318, 611 (1985).

    Google Scholar 

  34. W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson,J. Chem. Phys.,76, 637 (1982).

    Google Scholar 

  35. L. Verlet,Phys. Rev.,159, 98 (1967).

    Google Scholar 

  36. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gusteren, A. DiNola, and J. R. HaakJ. Chem. Phys.,81, 3684 (1984).

    Google Scholar 

  37. S. Nosé,J. Chem. Phys.,81, 511 (1984).

    Google Scholar 

  38. S. D. Pickett, A. K. Nowak, J. M. Thomas, B. K. Peterson, J. F. P. Swift, A. K. Cheetham, C. J. J. den Ouden and B. Smith,J. Phys. Chem.,94, 1233 (1990).

    Google Scholar 

  39. N. J. Henson, A. K. Cheetham, B. K. Peterson, S. D. Pickett, and J. M. Thomas,J Comp.-Aided. Mat. Des.,1, 41 (1993).

    Google Scholar 

  40. P. Santikary, S. Yashonath, and G. Anathakrishna,J. Phys. Chem.,96, 10249 (1992).

    Google Scholar 

  41. W. Heink, J. Körger, H. Pfeifer, and F. Stallmach,J. Am. Chem. Soc.,112, 2175 (1990).

    Google Scholar 

  42. S. Yashonath and P. Santikary,J. Phys. Chem.,98, 6368 (1994).

    Google Scholar 

  43. E. hernandez, M. Kawano, A. A. Shubin, C. M. Freeman, C. R. A. Catlow, J. M. Thomas, and K. I. Zamaraev, inProc. 9th Int. Zeolite Conference Montreal 1992, R. von Ballmoos, J. B. Higgins, and M. M. J. Treacy (eds), Butterworth-Heinemann, Stoneham, MA (1993).

    Google Scholar 

  44. R. L. June, A. T. Bell, and D. N. Theodorou,J. Phys. Chem.,96, 1051 (1992).

    Google Scholar 

  45. P. Demontis, E. S. Fois, G. B. Suffritti, and S. Quartieri,J. Phys. Chem.,94, 4329 (1990).

    Google Scholar 

  46. P. Demontis, G. B. Suffritti, E. Fois, and S. Quartieri,J. Phys. Chem.,96, 1482, (1992).

    Google Scholar 

  47. P. Demontis and G. B. Suffritti, inModeling of structure and Reactivity in Zeolites, C. R. A. Catlow (Ed), Academic Press, London, U. K. (1992).

    Google Scholar 

  48. L. M. Bull, N. J. Henson, A. K. Cheetham, J. M. Newsam, and S. J. Heyes,J. Phys Chem.,97, 11776 (1993).

    Google Scholar 

  49. P. Demontis, S. Yashonath, and M. L. Klein,J. Phys. Chem.,93, 5016 (1989).

    Google Scholar 

  50. R. L. June, A. T. Bell, and D. N. Theorodou,J. Phys. Chem.,95, 8866 (1991).

    Google Scholar 

  51. N. Metropolis, H. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and G. Teller,J. Chem. Phys.,21, 1087 (1953).

    Google Scholar 

  52. P. R. van Tassel, H. T. Davis, and A. V. McCormick,Mol. Phys.,73, 1107 (1991).

    Google Scholar 

  53. P. R. van Tassel, H. T. Davis, and A. V. McCormick,Mol. Phys.,76, 411 (1992).

    Google Scholar 

  54. R. L. June, R. L. June, A. T. Bell, and D. N. Theorodou,J. Phys. Chem.,94, 1508 (1990).

    Google Scholar 

  55. B. Smit and J. I. Siepmann,J. Phys. Chem.,98, 8442 (1994).

    Google Scholar 

  56. G. B. Woods and J. S. Rowlinson,J. Chem. Soc., Faraday Trans. II,85, 765 (1989).

    Google Scholar 

  57. P. R. van Tassel, H. T. Davis, and A. V. McCormick,J. Chem. Phys.,98, 8919 (1993).

    Google Scholar 

  58. C. J. Jameson, A. K. Jameson, H. M. Lim, and B. I. Baello,J. Chem. Phys.,100, 5965 (1994).

    Google Scholar 

  59. R. F. Cracknell and K. E. Gubbins,Langmuir,9, 824 (1993).

    Google Scholar 

  60. M. W. Deem and J. M. Newsam,Nature,342, 260 (1989).

    Google Scholar 

  61. C. M. Freeman, C. R. A. Catlow, J. M. Thomas, and S. Brode,Chem. Phys. Lett.,186, 137 (1991).

    Google Scholar 

  62. D. S. Santilli, T. V. Harris, S. I. Zones,Microporous Materials,1, 329 (1993).

    Google Scholar 

  63. P. A. Cox, A. P. Stevens, L. Banting, and A. M. Gorman, inZeolites and Related Microporous Materials: State of the Art 1994, (Stud. Surf. Sci. Catal.,84), J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hoelderich (Eds), Elsevier, Amsterdam, p 2115 (1994).

    Google Scholar 

  64. S. M. Auerbach, N. J. Henson, H. I. Metiu, and A. K. Cheetham, submitted for publication, 1995.

  65. A. G. Oblad,Oil and Gas J.,84 (1972).

  66. J. A. Hriljac, M. M. Eddy, A. K. Cheetham, and J. A. Donohue,J. Solid State Chem.,106, 66 (1993).

    Google Scholar 

  67. G. J. Kramer, N. P. Farragher, B. W. H. van Beest, and R. A. van Santen,Phys. Rev. B,43, 5068 (1991).

    Google Scholar 

  68. D. Barthomeuf and B.-H. Ha,J. Chem. Soc., Faraday Trans. I,69, 2147 (1973).

    Google Scholar 

  69. A. N. Fitch, H. Jobic, and A. Renouprez,J. Phys. Chem.,90, 1311 (1986).

    Google Scholar 

  70. M. J. Sanders, M. Leslie, and C. R. A. Catlow,J. Chem. Soc., Chem. Comm., 1271 (1984).

  71. T. Hseu, Ph. D. Thesis, University of Washington 1972, University Microfilm number 73-13835, Ann Arbor, Michigan, USA.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henson, N.J., Cheetham, A.K. Absorbed molecules in microporous hosts — Computational aspects. J Incl Phenom Macrocycl Chem 21, 137–158 (1995). https://doi.org/10.1007/BF00709414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709414

Keywords

Navigation