Skip to main content
Log in

Structural case studies of inclusion phenomena in zeolites: Xe in RHO and stilbene in ZSM-5

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The development and increased availability of brighter synchrotron sources has stimulated investigations of zeolite-inclusion complexes using powder X-ray diffraction data. This is illustrated with two examples of studies facilitated by these sources. Both involve the use of Rietveld refinement to obtain structure from data collected at a versatile synchrotron beamline. The first example describes the structural changes commensurate with Xe desorption from a fully Xe-loaded powder sample of Cd-exchanged zeolite rho. After exposure to the atmosphere, data were collected in real-time as Xe desorbed from the sample over a four hour period. The results of Rietveld refinement indicated that Xe is not lost continuously; instead within the first hour, Xe desorbs completely from the 8-ring and is replaced by H2O. Following rearrangement of the remaining Xe between the available 6-ring sites, it is lost as the sample hydrates fully. This behavior is probably the result of competition with H2O, which prefers the 8-ring site. In the second example, the high resolution and signal-to-background discrimination afforded the synchrotron powder X-ray diffraction experiment, was used to advantage to study the stilbene-ZSM-5 complex. Stilbene was located, using modeling techniques in the straight channels with one phenyl ring at the intersection of the two channel system. The structure is pseudo-tetragonal (a a b) at room temperature but distorts at lower temperatures to giveb>a. Distinguishing these subtle structural changes is facilitated by the superior resolution available at a beamline configured with both incident and diffracted beam monochromators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. M. Meier and D. H. Olson,Atlas of Zeolite Structure Types, Butterworths, London (1987).

    Google Scholar 

  2. P. B. Weisz and V. J. Frilette,J. Phys. Chem.,64, 382 (1960).

    Google Scholar 

  3. V. Alfredsson, T. Ohsuna, O. Terasaki, and J. Bovin,Angew. Chem. Int. Ed. Engl.,32, 1210 (1993).

    Google Scholar 

  4. J. J. Pluth and J. V. Smith, inIntrazeolite Chemistry, G. D. Stucky and F. G. Dyer (Eds),ACS. Symp. Ser. 218, 119 (1983).

  5. W. M. Meier, inZeolites: Synthesis, Structure, Technology and Application, B. Drzaj, S. Hocevar, and S. Pejovnik (Eds),Stud. Surf. Sci. Catal.,24, 217 (1985).

  6. D. E. Cox, B. H. Toby, and M. M. Eddy,Aust. J. Phys.,41, 117 (1988).

    Google Scholar 

  7. L. E. Iton, F. Trouw, T. O. Brun, J. E. Epperson, J. W. White, and S. J. Henderson,Langmuir,8, 1045 (1992).

    Google Scholar 

  8. J. Newsam and D. E. W. Vaughan, inZeolites: Synthesis, Structure, Technology and Application, B. Drzaj, S. Hocevar, and S. Pejovnik (Eds),Stud. Surf. Sci. Catal.,24 (1985).

  9. J. M. Newsam,Mat. Sci. Forum,27–28, 385 (1987).

    Google Scholar 

  10. C. A. Fyfe, H. Stobl, H. Gies, G. T. Kokatailo, and G. Barlow,J. Am. Chem. Soc,66, 1942 (1988).

    Google Scholar 

  11. H. Gies, B. Marler, C. Fyfe, G. Kokotailo, Y. Feng, and D. E. Cox,J. Phys. Chem. Solids,52, 1235 (1991).

    Google Scholar 

  12. C. R. A. Catlow and C. M. Freeman,Royal Institution Proceedings,63, 51 (1992).

    Google Scholar 

  13. J. M. Newsam, inProceedings of the Ninth International Zeolite Conference, R. B. v. Ballmoos, J. B. Higgins, and M. M. J. Treacy (Eds), Butterworth-Heineman, London, p 127 (1992).

    Google Scholar 

  14. A. P. Wilkinson, A. K. Cheetham, S. C. Tang, and W. J. Reppart,J. Chem. Soc., Chem. Comm., 1485 (1992).

  15. P. Coppens,Synchrotron Radiation Crystallography, Academic Press, London, (1992).

    Google Scholar 

  16. D. E. Cox, inSynchrotron Radiation Crystallography, P. Coppens (Eds), Academic Press, London, Vol. 186 (1992).

    Google Scholar 

  17. J. J. Pluth and J. V. Smith, in8th International Zeolite Conference, P. A. Jacobs and R. A. van Santen (Eds), Vol. 49, p 835 (1989).

  18. H. v. Koningsveld, J. C. Jensen, and H. v. Bekkum,Zeolites,10, 235 (1990).

    Google Scholar 

  19. H. v. Koningsveld, J. C. Jensen, and H. v. Bekkum,Zeolites,9, 253 (1989).

    Google Scholar 

  20. H. v. Koningsveld, F. Tuinstra, H. v. Bekkum, and J. C. Jensen,Acta Crystallog.,B45, 423 (1989).

    Google Scholar 

  21. H. v. Koningsveld, F. Tuinstra, H. v. Bekkum, and J. C. Jensen,Acta Crystallog.,B45, 127 (1989).

    Google Scholar 

  22. H. v. Koningsveld, J. C. Jensen, and H. v. Bekkum,Zeolites,7, 564 (1987).

    Google Scholar 

  23. B. F. Mentzen and M. Sacerdote-Peronnet,Mat. Res. Bull.,28, 1161 (1993).

    Google Scholar 

  24. D. L. Bish and J. E. Post,Modern Powder Diffraction, Mineralogical Society of America, Washington, DC (1989).

    Google Scholar 

  25. G. C. Smith,Synch. Rad. News,4, 24 (1991).

    Google Scholar 

  26. P. A. Lee, P. H. Citrin, P. Eisenberger, and B. M. Kincaid,Rev. Mod. Phys. 53, 769 (1981).

    Google Scholar 

  27. J. B. Parise, J. E. MacDougall, N. Herron, R. Farlee, A. W. Sleight, Y. Wang, T. Bein, K. Moller, and L. M. Moroney,Inorg. Chem.,27, 221 (1988).

    Google Scholar 

  28. G. A. Ozin, M. R. Steele, and A. J. Holmes,Chem. Mater.,6, 999 (1994).

    Google Scholar 

  29. C. J. Drummond and B. W. Ninham,Chem. Aust.,59, 529 (1992).

    Google Scholar 

  30. J. M. Newsam, T. O. Brun, F. Trouw, L. E. Iton, and Curtiss, inNew Catalytic Materials and Techniques, R. T. K. Baker and L. L. Murrell (Eds),ACS. Symp. Series 437, 25 (1990).

  31. W. H. Baur, R. X. Fischer, R. D. Shannon, R. H. Staley, A. J. Vega, L. Abrams, D. R. Corbin, and J. D. Jorgensen,Z. Kristallogr.,179, 281 (1987).

    Google Scholar 

  32. W. H. Baur, R. X. Fischer, and R. D. Shannon, inInnovation in Zeolite Materials Science, P. J. Grobet (Ed), Elsevier, Amsterdam p 281 (1988).

    Google Scholar 

  33. W. H. Baur, A. Bieniok, R. D. Shannon, and E. Prince,Z. Kristallogr.,187, 253 (1989).

    Google Scholar 

  34. A. Bieniok and W. H. Baur,J. Solid State Chem.,90, 173 (1991).

    Google Scholar 

  35. A. Bieniok and W. H. Baur,Mat. Sci. Forum,79–82, 721 (1991).

    Google Scholar 

  36. A. Bieniok and W. H. Baur,Acta Cryst.,B49, 812 (1993).

    Google Scholar 

  37. D. R. Corbin, L. Abrams, G. A. Jones, M. M. Eddy, W. T. A. Harrison, G. D. Stucky, and D. E. Cox,J. Amer. Chem. Soc.,112, 4821 (1990).

    Google Scholar 

  38. D. R. Corbin, L. Abrams, G. A. Jones, T. E. Gier, R. L. Harlow, J. B. Parise, and P. J. Dunn, inSynthesis/Characterization and Novel Applications of Molecular Sieve Materials, R. L. Bedard, T. Bein, M. E. Davis, J. Garces, V. A. Maroni, and G. D. Stucky (Eds), Materials Research Society, Pittsburgh, PA, p 23 (1990).

    Google Scholar 

  39. D. R. Corbin, L. Abrams, G. A. Jones, M. M. Eddy, W. T. A. Harrison, G. D. Stucky, and D. E. Cox,J. Amer. Chem. Soc.,112, 4821 (1990).

    Google Scholar 

  40. R. X. Fischer, W. H. Baur, R. D. Shannon, R. H. Staley, A. J. Vega, L. Abrams, and E. Prince,J. Phys. Chem.,90, 4414 (1986).

    Google Scholar 

  41. R. X. Fischer, W. H. Baur, R. D. Shannon, R. H. Staley, A. J. Vega, L. Abrams, D. R. Corbin, and J. D. Jorgensen,Z. Kristallogr.,179, 281 (1987).

    Google Scholar 

  42. R. X. Fischer, W. H. Baur, R. D. Shannon, R. H. Staley, L. Abrams, A. J. Vega, and J. D. Jorgensen,Acta Cryst.,B44, 321 (1988).

    Google Scholar 

  43. R. X. Fischer, W. H. Baur, and R. D. Shannon,Acta Cryst.,C45, 983 (1989).

    Google Scholar 

  44. L. B. McCusker, and C. Baerlocher, inSixth International Zeolite Conference, D. Olson and A. Bisio (Eds), Butterworths, London, p 812 (1984).

    Google Scholar 

  45. L. B. McCusker,Zeolites,4, 51 (1984).

    Google Scholar 

  46. J. B. Parise, and E. Prince,Mat. Res. Bull.,18, 841 (1983).

    Google Scholar 

  47. J. B. Parise, L. Abrams, T. E. Gier, D. R. Corbin, J. D. Jorgensen, and E. Prince,J. Phys. Chem.,88, 2303 (1984).

    Google Scholar 

  48. J. B. Parise, T. E. Gier, D. R. Corbin, and D. E. Cox,J. Phys. Chem.,88, 1635 (1984).

    Google Scholar 

  49. J. B. Parise, X. Liu, D. R. Corbin, and G. A. Jones, inSynthesis/Characterization and Novel Applications of Molecular Sieve Materials, R. L. Bedard, T. Bein, M. E. Davis, J. Garces, V. A. Maroni, and G. D. Stucky (Eds) Materials Research Society, Pittsburgh, PA, p 267 (1991).

    Google Scholar 

  50. J. B. Parise, X. Liu, and D. R. Corbin,J. Chem. Soc., Chem. Commun.,3, 162 (1991).

    Google Scholar 

  51. J. B. Parise, D. R. Corbin, L. Abrams, P. Northrup, J. Rackovan, T. M. Nenoff, and G. Stucky,Zeolites,14, 24 (1993).

    Google Scholar 

  52. A. V. Vernov, W. A. Steele, and L. Abrams,J. Phys. Chem.,97, 7660 (1993).

    Google Scholar 

  53. A. Loriso, M. J. Bojan, A. Vernov, and W. A. Steele,J. Phys. Chem.,97, 7665 (1993).

    Google Scholar 

  54. C.-J. Tsiao, J. S. Kauffman, D. R. Corbin, L. Abrams, E. Carroll, and C. Dybowski,J. Phys. Chem,95, 5586 (1991).

    Google Scholar 

  55. P. A. Wright, J. M. Thomas, S. Ramdas, and A. K. Cheetham,J. Chem. Soc., Chem. Comm., 1338 (1984).

  56. M. L. Smith, D. R. Corbin, and C. Dybowski,J. Phys. Chem.,97, 9045 (1993).

    Google Scholar 

  57. R. Rinaldi, J. J. Pluth, and J. V. Smith,Acta Cryst.,B31, 1603 (1975).

    Google Scholar 

  58. J. L. Schlenker, J. J. Pluth, and J. V. Smith,Mat. Res. Bull.,14, 751 (1979).

    Google Scholar 

  59. J. L. Schlenker, J. J. Pluth, and J. V. Smith,Mat. Res. Bull.,14, 849 (1979).

    Google Scholar 

  60. W. J. Mortier, J. J. Pluth, and J. V. Smith,Nature,256, 718 (1975).

    Google Scholar 

  61. W. J. Mortier,Comparison of Extraframework Sites in Zeolites, Butterworths, London (1983).

    Google Scholar 

  62. I. Gameson, P. A. Wright, T. Rayment, and J. M. Thomas,Chem Phys. Lett.,123, 145 (1986).

    Google Scholar 

  63. M. Keane Jr., G. C. Sonnichsen, L. Abrams, D. R. Corbin, T. E. Gier, and R. D. Shannon,Appl. Catal.,32, 361 (1987).

    Google Scholar 

  64. T. E. Gier, R. D. Shannon, G. C. Sonnichsen, D. R. Corbin, and M. Keane, Jr.,US Patent 4,806,689 (1989).

  65. T. Ito and J. Fraissard,Zeolites,7, 554 (1987).

    Google Scholar 

  66. H. M. Rietveld,J. Appl. Crystallog.,2, 65 (1969).

    Google Scholar 

  67. A. C. Larson and R. B. Von Dreele,GSAS: General Structure Analysis System, Los Alamos Nat. Lab, Rpt. No.: LAUR86-748 (1986)

  68. R. X. Fisher, W. H. Baur, R. D. Shannon, R. H. Staley, L. Abrams, A. Vega, and J. Jorgensen,Acta Cryst.,B44, 321 (1988).

    Google Scholar 

  69. C. Baerlocher, A. Hepp, and W. M. Meier,DLS Manual, Institut für Kristallographie und Petrographie: ETH, Zurich (1977).

    Google Scholar 

  70. D. R. Corbin, L. Abrams, M. L. Smith, C. R. Dybowski, J. B. Parise, and J. Hriljac,J. Chem. Soc., Chem. Comm, 1027 (1993).

  71. H. E. Robson, D. P. Shoemaker, R. A. Ogilvie, and P. C. Manor,ACS. Advan. Chem. Series,121, 106 (1973).

    Google Scholar 

  72. H. E. Robson,U. S. Patent 3, 904, 738 (1975).

  73. N. J. Turro and P. Wan,J. Am. Chem. Soc.,107, 678 (1985).

    Google Scholar 

  74. N. J. Turro and Z. Zhang,Tetrahedron Letters,28, 5637 (1987).

    Google Scholar 

  75. N. J. Turro, X. Lei, and C.-C. Cheng,J. Am. Chem. Soc.,107, 5824 (1985).

    Google Scholar 

  76. J. V. Caspar, V. Ramamurthy, and D. R. Corbin,J. Am. Chem. Soc.,113, 600 (1991).

    Google Scholar 

  77. V. Ramamurthy, J. V. Caspar, D. R. Corbin, D. F. Eaton, J. S. Kauffman, and C. Dybowski,J. Photochem. Photobiol,31, 47 (1990).

    Google Scholar 

  78. V. Ramamurthy, J. V. Caspar, and D. R. Corbin,J. Am. Chem. Soc.,113, 594 (1991).

    Google Scholar 

  79. H. Nakamoto and H. Takahashi,Chem. Letters, 1013 (1981).

  80. D. G. Hay and H. Jaeger,J. Chem. Soc., Chem. Comm., 1433 (1984).

  81. G. Kokotailo, L. Riekert, and A. Tissler, inZeolites as Catalysts, Sorbents and Detergent Builders, H. G. Karge and J. Weitkamp (Eds), Elsevier Scientific, Amsterdam, p 821 (1989).

    Google Scholar 

  82. J. B. Parise, J. A. Hriljac, D. E. Cox, D. R. Corbin, and V. Ramamurthy,J. Chem. Soc., Chem. Comm., 226 (1993).

  83. J. Taylor,Zeolites,7, 311 (1987).

    Google Scholar 

  84. E. L. Wu, S. L. Lawton, D. H. Olson, A. C. Rohman, and G. T. Kokotailo,J. Phys. Chem.,83, 2777 (1979).

    Google Scholar 

  85. G. D. Price, J. J. Pluth, J. V. Smith, and T. Araki,Nature,292, 818 (1981).

    Google Scholar 

  86. C. Baerlocher, inProceedings of the 6th International Zeolite Conference, D. Olson and A. Bisio (Eds), Butterworths, Guildford, UK, p 823 (1984).

    Google Scholar 

  87. B. F. Mentzen,Mat. Res. Bull.,22, 489 (1987).

    Google Scholar 

  88. B. F. Mentzen,J. Appl. Crystallog.,22, 100 (1989).

    Google Scholar 

  89. A. Le Bail, H. Duroy, and J. L. Fourquet,Mat. Res. Bull.,23, 447 (1988).

    Google Scholar 

  90. L. S. Rollman and E. K. Volyocsik,Inorganic Syntheses, Wiley, New York,22, 61–68 (1983).

    Google Scholar 

  91. J. A. Hriljac, J. B. Parise, G. H. Kwei, and K. B. Schwartz,J. Phys. Chem. Solids,52, 1273 (1991).

    Google Scholar 

  92. Y. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox,Phys. Earth Planet. Inter.,76, 1 (1993).

    Google Scholar 

  93. Y. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox,Phys. Earth Planet. Inter.,76, 17, (1993).

    Google Scholar 

  94. E. R. Geus, M. J. Den Exter, and H. v. Bekkum,J. Chem. Soc., Faraday Trans,88, 3101 (1992).

    Google Scholar 

  95. D. H. Olson, W. O. Hagg, and R. M. Lago,J. Catal.,61, 390 (1980).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parise, J.B. Structural case studies of inclusion phenomena in zeolites: Xe in RHO and stilbene in ZSM-5. J Incl Phenom Macrocycl Chem 21, 79–112 (1995). https://doi.org/10.1007/BF00709412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709412

Keywords

Navigation