Advertisement

Probing intrazeolite space

  • Lloyd Abrams
  • David R. Corbin
Article
  • 62 Downloads

Abstract

Molecular sieves are inorganic framework structures generally composed of crystalline aluminosilicate tetrahedra which are arranged to form channels of 2–10 Å, diameters and cages with dimensions from 6–15 Å. Absorption of probe molecules of varying geometries and sizes is used to characterize the framework dimensions and topography in concert with X-ray diffraction identification of the specific structure. From unit cell dimensions and assumptions about the size of the framework forming species, a pore volume can be calculated. The volumes of the absorbed probe molecules, using their liquid densities, are then compared to the calculated pore volume. The constraint on the packing of the absorbed molecules is quantified by comparing their packing density to their density in the liquid state. Further, the packing of different probe molecules into the same pore volume is compared via a ratio technique called the ‘packing ratio’. The effect of the lattice geometry and framework dimensions on the ‘packing ratios’ is to provide a set of characteristic values for a given molecular sieve. The packing ratios for zeolites rho and ZSM-5 are presented as expectation values for other scientists to use as bases of comparison.

Keywords

Zeolite Pore Volume Molecular Sieve Aluminosilicate Packing Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Smart,Chemicals Economics Handbook, SRI International, (1992).Google Scholar
  2. 2.
    R. Szostak,Handbook of Molecular Sieves, Van Nostrand Reinhold, New York (1992).Google Scholar
  3. 3.
    AIPO4-8: R. M. Dessau, J. L. Schlenker, and J. B. Higgins,Zeolites,10, 522 (1990).Google Scholar
  4. 3a.
    J. W. Richardson, Jr. and E. T. C. Vogt,Zeolites,12, 13 (1992). VPI-5:Google Scholar
  5. 3b.
    L. B. McCusker, Ch. Baerlocher, E. Jahn, and M. Buelow,Zeolites,11, 308 (1991).Google Scholar
  6. 3c.
    M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder,Nature 331, 698 (1988). Cloverite:Google Scholar
  7. 3d.
    M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche, and H. Kessler,Nature,352, 320 (1991).Google Scholar
  8. 4.
    F. Liebau,Structural Chemistry of Silicates, Springer-Verlag, Würzburg, p 136 (1985).Google Scholar
  9. 5.
    D. W. Breck,Zeolite Molecular Sieves, J. Wiley and Sons, New York, pp 607, 633–41 (1974).Google Scholar
  10. 6.
    R. Szostak,Molecular Sieves: Principles of Synthesis and Characterization, Van Nostrand Reinhold, New York (1989).Google Scholar
  11. 6a.
    H. van Bekkum, E. M. Flanagen, and J. C. Jansen (Eds.),Introduction to Zeolite Science and Practice, Elsevier, Amsterdam (1991). (Stud. Surf. Sci. Catal.,58 (1991)).Google Scholar
  12. 7.
    J. E. Huheey,Inorganic Chemistry, 2nd Edition, Harper and Row, New York, p 232 (1978).Google Scholar
  13. 8.
    W. M. Meier and D. H. Olson,Atlas of Zeolite Structure Types, Third Edition, Butterworth-Heinemann, Boston, p 9 (1992).Google Scholar
  14. 9.
    S. G. Hill and D. Seddon,Zeolites,5, 173 (1985).Google Scholar
  15. 10.
    W. W. Kaeding, C. Chu, L. B. Young, B. Weinstein, and S. A. Butter,J. Catal. 67, 159, (1981).Google Scholar
  16. 10a.
    J. Koresh and A. Soffer,J. Chem. Soc., Faraday I,76, 2457 (1980).Google Scholar
  17. 10b.
    J. Koresh and A. Soffer,J. Chem. Soc., Faraday I 76, 2472 (1980).Google Scholar
  18. 10c.
    R. M. Moore and J. R. Katzer,A. I. Ch. E. Journal,18, 816 (1972).Google Scholar
  19. 11.
    Fisher Scientific Co., Cat. No. 12-824,U.S. Patent 2,308,402 (1940).Google Scholar
  20. 12.
    L. Gurvitsch,Russ. J. Phys. Chem.,47, 805 (1915).Google Scholar
  21. 13.
    —,Zeolite Molecular Sieves, J. Wiley and Sons, New York These references should provide a reasonable overview of sorption: See [5], Chap. 8, “Adsorption by Dehydrated Zeolite Crystals’, p 593ff. (1974)Google Scholar
  22. 13a.
    S. J. Gregg and K. S. W. Sing, Chap. 4, Adsorption of Gases on Porous Solids,Surface & Colloid Science,19, 231 (1976).Google Scholar
  23. 13b.
    J. Koresh,J. Colloid Interface Science,88, 398 (1982).Google Scholar
  24. 13c.
    J. L. Soto, P. W. Fisher, A. J. Glessner, and A. L. Myers,J. Chem. Soc., Faraday I,77, 157 (1981).Google Scholar
  25. 13d.
    A. P. Vavlitis, D. M. Ruthven, and K. F. Loughlin,J. Colloid Interface Science,84, 526 (1981). The titles of these papers are included to show the diversity of studies:Google Scholar
  26. 13e.
    C. N. Satterfield and A. J. Frabetti Jr., “Sorption and Diffusion of Gaseous Hydrocarbons in Synthetic Mordenite”,A. I. Ch. E. Journal,13, 731 (1967).Google Scholar
  27. 13f.
    C. N. Satterfield, J. R. Katzer, and W. R. Vieth, “Desorption and Counterdiffusion Behavior of Benzene and Cumene in H-Mordenite”,Ind. Eng. Chem. Fundam. 10, 478 (1971).Google Scholar
  28. 13g.
    C. N. Satterfield, C. K. Colton, and W. H. Pitcher, “Restricted Diffusion in Liquids within Fine Pores”,A. I. Ch. E. Journal,19, 628 (1973).Google Scholar
  29. 13h.
    Y. H. Ma and T. Y. Lee, “Sorption and Diffusion Properties of Natural Zeolites”, inNatural Zeolites, L. B. Sand and F. A. Mumpton (Eds.), Pergamon Press, Elmsford, New York, p 373 (1976).Google Scholar
  30. 13i.
    J. Karger and J. Caro “Interpretation and Correlation of Zeolite Diffusivities Obtained from NMR and Sorption Experiments”,J. Chem. Soc. Faraday I,73, 1363 (1977).Google Scholar
  31. 13k.
    J. C. Vedrine, “Mass Transport in Heterogenenous Catalysts”, inMass Transport in Solids, F. Beniere and R. A. Catlow (Eds), Plenum, New York, Chap. 20 (1981).Google Scholar
  32. 13l.
    D. M. Ruthven and L.-K. Lee, “Kinetics of Nonisothermal Sorption: Systems with Bed Diffusion Control”,A. I. Ch. E. Journal,27, 654 (1981).Google Scholar
  33. 13m.
    J. Karger and D. M. Ruthven, “Diffusion in Zeolites”,J. Chem. Soc., Faraday I,77, 1485 (1981).Google Scholar
  34. 13n.
    K. J. Mysels, “Diffusion-Controlled Adsorption Kinetics. General Solution and Some Applications”,J. Phys. Chem.,86, 4648 (1982).Google Scholar
  35. 13o.
    R. Aris, “Interpretation of Sorption and Diffusion Data in Porous Solids”,Ind. Eng. Chem. Fundam.,22, 150 (1983).Google Scholar
  36. 13p.
    L. V. C. Rees, “Adsorption and Diffusion of Gases in Zeolites”,Chemistry and Industry (London), 252 (1984).Google Scholar
  37. 13q.
    R. Haul and H. Stremming, “Nonisothermal Sorption Kinetics in Porous Adsorbents”,J. Colloid Interface Science,97, 348 (1984).Google Scholar
  38. 14.
    R. M. Moore and J. R. Katzer,A. I. Ch. E. Journal,18, 816 (1972).Google Scholar
  39. 15.
    L. Abrams and D. R. Corbin,J. Catal.,127, 9 (1991).Google Scholar
  40. 16.
    L. Abrams, M. Keane, and G. C. Sonnichsen,J. Catal.,115, 361 (1989).Google Scholar
  41. 17.
    J. B. Parise, L. Abrams, T. E. Gier, D. R. Corbin, J. D. Jorgensen, and E. Prince,J. Phys. Chem.,88, 2303 (1984).Google Scholar
  42. 18.
    L. Abrams, D. R. Corbin, and M. Keane,J. Catal.,126, 610 (1990).Google Scholar
  43. 19.
    D. H. Olson, G. T. Kokotailo, S. L. Lawton, and W. M., Meier,J. Phys. Chem.,85, 2238 (1981).Google Scholar
  44. 20.
    E. G. Derouane and Z. Gabelica,J. Catal.,65, 486 (1980).Google Scholar
  45. 20a.
    E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, and J. V. Smith,Nature,271, 512 (1978).Google Scholar
  46. 20b.
    A. Auroux, H. Dexpert, C. LeClercq, and J. Vedrine,Appl. Catal.,6, 95 (1983). C. G. Pope,J. Catal.,72, 174 (1981).Google Scholar
  47. 20c.
    H.-J. Doelle, J. Heering, L. Rickert, and L. Marosi,J. Catal.,71, 27 (1981).Google Scholar
  48. 20d.
    R. LeVanMao, O. Pilati, A. Marzi, G. Leofanti, A. Villa, and V. Ragaini,React. Kinet. Catal. Lett.,15, 293 (1980).Google Scholar
  49. 20e.
    H. Nakamoto and H. Takahashi,Zeolites,2, 67 (1982).Google Scholar
  50. 21.
    A comparison of the relative diffusion coefficients was made by using a modified form of the Crank equation: (Qt−Qo)/(Qeq−Qo)=c*(Dt)1/2, {[5] p. 673} where Qt is the amount sorbed at time t, Qeq is the equilibrium amount, c is a constant depending on the geometry of the crystals, and D is the diffusion coefficient. For the case where Qo is zero, the ratio of Qt to Qeq is the occupancy of the crystals. Rearranging the equation yields: D=(k/t)*(Qt/Qeq)2, which is valid only for short times.Google Scholar
  51. 22.
    Z. Gabelica, J. B. Nagy, and G. Debras,J. Catal.,84, 256 (1983).Google Scholar
  52. 23.
    E. G. Derouane, S. Detremmerie, Z. Gabelica, and N. Blom,Appl. Catal.,1, 201 (1981).Google Scholar
  53. 24.
    P. A. Jacobs, E. G. Derouane, and J. Weitkamp,J. Chem Soc., Chem. Commun., 592 (1981).Google Scholar
  54. 25.
    S. M. Csicsery,Zeolites,4, 202 (1984).Google Scholar
  55. 26.
    V. N. Ramannikov, A. S. Loktev, A. N. Spektor, G. L. Bitman, K. G. Ione, P. S. Chekrii,Neftekhimiya,31, 409–15 (1991).Google Scholar
  56. 27.
    D. R. Corbin, L. Abrams, and C. Bonifaz,J. Catal,115, 420 (1989).Google Scholar
  57. 28.
    E. G. Derouane, P. Dejaifve, Z. Gabelica, and J. Vedrine,J. Chem. Soc., Faraday Disc.,72, 331 (1981).Google Scholar
  58. 28a.
    E. G. Derouane,J. Catal.,72, 177 (1981).Google Scholar
  59. 29.
    D. R. Corbin, W. C. Seidel, L. Abrams, N. Herron, G. D. Stucky, and C. A. Tolman,Inorg. Chem.,24, 1800 (1985).Google Scholar
  60. 30.
    N. J. Turro C.-C. Cheng, L. Abrams, and D. R. Corbin,J. Am. Chem. Soc.,109, 2449 (1987).Google Scholar
  61. 31.
    N. J. Turro, N. Han, X-G. Lei, J. R. Fehlner, and L. Abrams,J. Am. Chem. Soc., (submitted).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Lloyd Abrams
  • David R. Corbin

There are no affiliations available

Personalised recommendations