Stoichiometry and conformation of the azacrown moiety in sodium complexes of azacrown ethers. a Raman/IR spectroscopic study. Part I: Complexes of 4,13-diaza-18-crown-6

  • Takayuki Chujo
  • Isao Saraoka
  • Shinobu Kato
  • Hiroyasu Sato
  • Koichi Fukuhara
  • Hiroatsu Matsuura
Article

Abstract

Three sodium complexes (bromide, iodide an thiocyanate) of 4,13-diaza-18-crown-6 were studied using Raman and IR spectroscopy and normal coordinate calculations to probe the stoichiometry of the complexes and the variation in the conformation of azacrown moiety on complex formation. Complex formation is accompaniedby characteristic shifts of the bands, especially of those in the 800–900 cm−1 region. Complexes of both 1: 1 and 2:1 stoichiometry were observed. Normal coordinate calculations showed the reduction of symmetry of azacrown moiety toC 2 , in contrast to theC 2h symmetry known for the parent azacrown and potassium thiocyanate complex.

Key words

Azacrown ether sodium complex conformation Raman/IR spectra normal mode calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Dobler:Ionophores and Their Structures, Ch. 8, pp. 121–213, Wiley (1981).Google Scholar
  2. 2.
    I. Goldberg:Complexes of Crown Ethers with Molecular Guests, Inclusion Compounds (Vol. 2, Eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol), Ch. 9, pp. 261–335, Academic Press (1984).Google Scholar
  3. 3.
    F. Vögtle and E. Weber (Eds.):Host Guest Complex Chemistry/Macrocycles, Springer Verlag (1985).Google Scholar
  4. 4.
    H. Sato and Y. Kusumoto:Chem. Lett. 635 (1978).Google Scholar
  5. 5.
    M. Fouassier and J.C. Lassegues:J. Chim. Phys. 75, 865 (1978).Google Scholar
  6. 6.
    H. Takeuchi, T. Arai and I. Harada:J. Mol. Struct. 146, 197 (1986).Google Scholar
  7. 7.
    K. Fukushima and Y. Tamaki:J. Mol. Struct. 162, 157 (1987)Google Scholar
  8. 8.
    R.K. Khanna and D.D. Stranz:Spectrochim. Acta. A36, 387 (1980).Google Scholar
  9. 9.
    L.J. Hilliard, M.R. Rice and H.S. Gold:Spectrochim. Acta. A38, 611 (1982).Google Scholar
  10. 10.
    V. Zhelyaskov, G. Georgiev, Zh. Nickolov and M. Miteva:Spectrochim. Acta A45 625 (1989).Google Scholar
  11. 11.
    O. Egyed and V.P. Izvekov:Spectrosc. Lett. 22, 387 (1989).Google Scholar
  12. 12.
    H. Takeuchi, T. Arai and I. Harada.J. Mol. Struct. 223, 355 (1990).Google Scholar
  13. 13.
    H. Matsuura, K. Fukuhara, K. Kaneko and H. Yoshida:J. Mol. Struct. 265, 269 (1992).Google Scholar
  14. 14.
    M. Herceg and R. Weiss:Bull. Soc. Chim. Fr. 549 (1972).Google Scholar
  15. 15.
    D. Moras, B. Metz, M. Herceg and R. Weiss:Bull. Soc. Chim. Fr. 551 (1972).Google Scholar
  16. 16.
    I. Saraoka, S. Kato, T. Chujo, H. Sato, K. Fukumura and H. Matsuura: to be published.Google Scholar
  17. 17.
    H. Matsuura:Comput. Chem. 14, 59 (1990).Google Scholar
  18. 18.
    J.W.H.M. Uiterwijk, S. Harkema and D. Feil:J. Chem. Soc., Perkin Trans. 2, 721 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Takayuki Chujo
    • 1
  • Isao Saraoka
    • 1
  • Shinobu Kato
    • 1
  • Hiroyasu Sato
    • 1
    • 2
  • Koichi Fukuhara
    • 3
  • Hiroatsu Matsuura
    • 3
  1. 1.Department of Chemistry for Materials, Faculty of EngineeringMi'e UniversityTsuJapan
  2. 2.Institute for Molecular ScienceOkazakiJapan
  3. 3.Department of Chemistry, Faculty of ScienceHiroshima UniversityHigashi-HiroshimalJapan

Personalised recommendations