Boundary-Layer Meteorology

, Volume 76, Issue 4, pp 395–409 | Cite as

A simple extension of the Louis method for rough surface layer modelling

  • I. Uno
  • X -M. Cai
  • D. G. Steyn
  • S. Emori
Research Note


The surface flux calculation method proposed by Louis (1979) is extended by allowing momentum and heat to have different roughness lengths (z0 andzT respectively). Our approach is to extend the traditional analysis by a more careful consideration of potential temperature structure near the surface. This consideration leads to a redefinition of the bulk Richardson number. For bulk transfer coefficients, our method shows a significant improvement over the original Louis method when compared with the theoretical surface-layer model applied to rough surfaces. Numerical experiments simulating sea breezes in 2D show that our extension is crucially important in simulating light wind and low humidity conditions.


Potential Temperature Roughness Length Surface Flux Richardson Number Simple Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’,J. Atmos. Sci. 28, 181–189.Google Scholar
  2. Clarke, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models’,Aust. Meteorol. Mag. 18, 51–73.Google Scholar
  3. Garratt, J. R. and Francey, R. J.: 1978, ‘Bulk Characteristics of Heat Transfer in the Unstable Baroclinic Atmospheric Boundary Layer’,Boundary-Layer Meteorol. 15, 399–421.Google Scholar
  4. Garratt, J. R.: 1992,The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.Google Scholar
  5. Kessler, R. C. and Douglas, S. G.: 1992,User's Guide to the System Applications International Mesoscale Model (Ver. 2.0), System Application Int., SYSAPP-92-085.Google Scholar
  6. Louis, J-F.: 1979, ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’,Boundary-Layer Meteorol. 17, 187–202.Google Scholar
  7. Louis, J-F., Tiedtle, M., and Geleyn, J.-F.: 1982, ‘A Short History of the PBL Parameterization at ECMWF’,Proceedings of the 1981 ECMWF Workshop on Planetary Boundary Layer Parameterization, 59–80, ECMWF, Reading U.K.Google Scholar
  8. Mahrer, Y. and Pielke, R. A.: 1978, ‘A Test of an Upstream Spline Interpretation Technique for the Advective Terms in a Numerical, Mesoscale Model’,Mon. Wea. Rev. 106, 818–830.Google Scholar
  9. Owen, P. R. and Thomson, W. R.: 1963, ‘Heat Transfer Across Rough Surfaces’,J. Fluid Mech. 15, 321–334.Google Scholar
  10. Pielke, R. A.: 1974, ‘A Three Dimensional Numerical Model of the Sea Breezes over South Florida’,Mon. Wea. Rev. 102, 115–134.Google Scholar
  11. Pielke, R. A. Cotton, W. R., Walko R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H.: 1992, ‘A Comprehensive Meteorological Modeling, System-RAMS’,Meteorol. Atmos. Phys. 49, 69–91.Google Scholar
  12. Tremback, C. J. and Kessler, R.: 1985, ‘A Surface Temperature and Moisture Parametrization for use in Mesoscale Numerical Models’,Preprints, the 7th AMS Conf. Numerical Weather Prediction, June 17–20, Montreal, Quebec, Canada,American Meteorol. Sco., 355–358.Google Scholar
  13. Ulrickson, B. L. and Mass, C. F.: 1990, ‘Numerical Investigation of Mesoscale Circulations over the Los Angles Basin. Part I. A Verification Study’,Mon. Wea. Rev.,118, 2138–2161.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • I. Uno
    • 1
  • X -M. Cai
    • 2
  • D. G. Steyn
    • 2
  • S. Emori
    • 3
  1. 1.National Institute for Environmental StudiesTsukuba, IbarakiJapan
  2. 2.The University of British ColumbiaVancouverCanada
  3. 3.College of Arts and SciencesUniversity of TokyoTokyoJapan

Personalised recommendations