Skip to main content
Log in

Complementary aspects of gravitation and electromagnetism

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A convention with regard to geometry, accepting nonholonomic aether motion and coordinate-dependent units, is always valid as an alternative to Einstein's convention. Choosing flat spacetime, Newtonian gravitation is extended, step by step, until equations closely analogous to those of Einstein's theory are obtained. The first step, demanded by considerations of inertia, is the introduction of a vector potential. Treating the electromagnetic and gravitational fields as real and imaginary components of a complex field (gravitational mass being treated as imaginary charge), the Maxwell stress-momentum-energy tensor for the complex field is then used as the source for both fields. The spherically symmetric solution of these unified field equations describes the electron. Third, effects arising from motion of aether fluid with respect to the artificial reference systems of flat spacetime are included. On the grounds that attraction between likes and repulsion between likes are, a priori, equally possible, it is suggested that gravitational and electromagnetic phenomena should enjoy equal status. This can be achieved on the scale of an infinite cosmos by introducing a hierarchy of isolated systems, each of which is a universe when viewed internally and an elementary particle when viewed externally. A universe (defined by the Hubble radius), an electron, and a neutrino are three consecutive isolated systems of the hierarchy. Implied is the existence of antiuniverses where gravitational mass has opposite sign and antimatter predominates. Remarkable relationships between physical constants emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. Browne,Found. Phys. 5, 387 (1975).

    Google Scholar 

  2. P. F. Browne,Found. Phys. 6, 457 (1976).

    Google Scholar 

  3. R. H. Dicke,Phys. Rev. 125, 2163 (1962).

    Google Scholar 

  4. J. A. Wheeler and R. P. Feynman,Rev. Mod. Phys. 21, 425 (1949).

    Google Scholar 

  5. P. F. Browne,Phys. Lett. 29A, 588 (1969).

    Google Scholar 

  6. D. W. Sciama,Mon. Not. Roy. Astr. Soc. 113, 34 (1953).

    Google Scholar 

  7. D. Lynden-Bell,Mon. Not. Roy. Astr. Soc. 135, 413 (1967).

    Google Scholar 

  8. F. Hoyle and J. V. Narlikar,Proc. Roy. Soc. A 282, 191 (1964).

    Google Scholar 

  9. L. Brillouin,Proc. Nat. Acad. Sci. U.S. 53, 475, 1280 (1965).

    Google Scholar 

  10. J. Hund,Z. Phys. 124, 724 (1948).

    Google Scholar 

  11. R. Arnowitt, S. Deser, and C. W. Misner,Phys. Rev. 120, 313 (1960).

    Google Scholar 

  12. R. d'E. Atkinson,Proc. Roy. Soc. A 272, 60 (1963).

    Google Scholar 

  13. F. H. J. Cornish,Proc. Roy. Soc. A 273, 413 (1963).

    Google Scholar 

  14. C. Møller,The Theory of Relativity (Oxford University Press, Oxford, 1972), pp. 474–479.

    Google Scholar 

  15. H. A. Wilson,Phys. Rev. 17, 54 (1921).

    Google Scholar 

  16. R. H. Dicke,Rev. Mod. Phys. 29, 363 (1957).

    Google Scholar 

  17. P. F. Browne,Nature 193, 1019 (1962).

    Google Scholar 

  18. R. C. Jaklevic, J. Lambe, A. H. Silver, and J. E. Mercereau,Phys. Rev. Lett. 12, 159 (1964).

    Google Scholar 

  19. Y. Aharanov and D. Bohm,Phys. Rev. 115, 485 (1959).

    Google Scholar 

  20. H. Erlichson,Am. J. Phys. 38, 162 (1970).

    Google Scholar 

  21. L. Motz,Phys. Rev. 126, 378 (1962).

    Google Scholar 

  22. T. A. Welton,Phys. Rev. 74, 1157 (1948).

    Google Scholar 

  23. E. A. Power,Am. J. Phys. 34, 516 (1966).

    Google Scholar 

  24. E. M. Kelly,Am. J. Phys. 31, 785 (1963).

    Google Scholar 

  25. G. Rosen,Can. J. Phys. 45, 2383 (1967).

    Google Scholar 

  26. P. Harris,Can. J. Phys. 47, 1884 (1969).

    Google Scholar 

  27. K. Johnson, M. Baker, and R. S. Willey,Phys. Rev. Lett. 11, 518 (1963).

    Google Scholar 

  28. Th. A. J. Maris, V. E. Herscovitz, and G. Jacob,Phys. Rev. Lett. 12, 313 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browne, P.F. Complementary aspects of gravitation and electromagnetism. Found Phys 7, 165–183 (1977). https://doi.org/10.1007/BF00709005

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709005

Keywords

Navigation