Advertisement

Foundations of Physics

, Volume 6, Issue 2, pp 193–208 | Cite as

Extended view of classical contact transformations

  • Robert H. Kohler
Article

Abstract

Classical contact transformation theory is reconstructed from the concept of explicit rather than implicit transformation equations. This proves the existence of contact transformations from any given Hamiltonian to any prescribed Hamiltonian (with the same number of degrees of freedom).

Keywords

Transformation Equation Transformation Theory Contact Transformation Extended View Classical Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Goldstein,Classical Mechanics, Addison-Wesley, Reading (1950).Google Scholar
  2. 2.
    J. W. Leech,Classical Mechanics, Methuen, London (1963).Google Scholar
  3. 3.
    R. J. Finkelstein,Non-Relativistic Mechanics, Benjamin, New York (1973).Google Scholar
  4. 4.
    J. Schwinger,Quantum Kinematics and Dynamics, Benjamin, New York (1970).Google Scholar
  5. 5.
    R. H. Kohler,Phys. Lett. 26A, 320 (1968);27A, 75 (1968).Google Scholar
  6. 6.
    R. H. Kohler,Forts. Physik 17, 599 (1969).Google Scholar
  7. 7.
    G. R. Gruber,Found. Phys. 1, 227 (1971);4, 19 (1974);Int. J. Theoret. Phys. 6, 31 (1972);8, 299 (1973);Am. J. Phys. 40, 1537 (1972).Google Scholar
  8. 8.
    G. S. Agarwal and E. Wolf,Phys. Rev. D 2, 2161, 2187, 2206 (1970).Google Scholar
  9. 9.
    I. I. Rabi, N. F. Ramsey, and J. Schwinger,Rev. Mod. Phys. 26, 167 (1954).Google Scholar
  10. 10.
    F. V. Bunkin and A. M. Prokhorov,Sov. Phys.—JETP 19, 739 (1964).Google Scholar
  11. 11.
    R. H. Kohler,Phys. Rev. 151, 165 (1966).Google Scholar
  12. 12.
    M. Kolsrud,J. Math. Phys. 11, 829 (1970);Phys. Rev. 104, 1186 (1956).Google Scholar
  13. 13.
    G. Prange, inEncyklopädie der Mathematischen Wissenschaften, B. G. Teubner, Leipzig (1935), Vol. IV[1, II], p. 505.Google Scholar
  14. 14.
    D. ter Haar,Elements of Hamiltonian Mechanics, 2nd ed., North-Holland, Amsterdam (1964).Google Scholar
  15. 15.
    R. H. Kohler,Int. J. Theoret. Phys. 13, 37 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Robert H. Kohler
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaLos Angeles

Personalised recommendations