Advertisement

Foundations of Physics

, Volume 6, Issue 6, pp 717–726 | Cite as

The superfluid vacuum state, time-varying cosmological constant, and nonsingular cosmological models

  • K. P. Sinha
  • C. Sivaram
  • E. C. G. Sudarshan
Article

Abstract

Some cosmological consequences of the superfluid vacuum state developed previously by the authors are discussed, particularly with regard to the initial stages of the universe. The transition temperature of the hadronic superfluid (superfluid during the hadron era) is estimated to be 10 13 K, which is the same as the Hagedorn temperature, giving a physical basis of the thermodynamic bootstrap model.

Keywords

Transition Temperature Cosmological Constant Vacuum State Cosmological Model Physical Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. P. Sinha, C. Sivaram, and E. C. G. Sudarshan,Found. Phys. 6, 65 (1976).Google Scholar
  2. 2.
    A. D. Linde,Pis'ma Zh. Eksp. Teor. Fiz. 19, 320 (1974) [JETP Lett. 19, 183 (1974)]; S. Weinberg,Phys. Rev. D 9, 3357 (1974).Google Scholar
  3. 3.
    A. Salam inElementary Particle Theory (Noble Symposium No. 8), N. Svartholm, ed., Almquist and Wiksell, Stockholm (1968).Google Scholar
  4. 4.
    S. Weinberg,Phys. Rev. Lett. 19, 1264 (1967);Phys. Rev. D 7, 2887 (1973).Google Scholar
  5. 5.
    J. Dreitlein,Phys. Rev. Lett. 33, 1243 (1974).Google Scholar
  6. 6.
    P. Higgs,Phys. Rev. 145, 1156 (1966).Google Scholar
  7. 7.
    C. Sivaram and K. P. Sinha,Nuovo Cimento Lett. 8, 324 (1973).Google Scholar
  8. 8.
    C. Sivaram and K. P. Sinha,Phys. Lett. 60B, 181 (1976);J. Indian Inst. Sci. 57, 257 (1975).Google Scholar
  9. 9.
    E. A. Lord, K. P. Sinha, and C. Sivaram,Prog. Theor. Phys. 52, 161 (1974).Google Scholar
  10. 10.
    C. Sivaram, K. P. Sinha, and E. A. Lord,Nature 249, 640 (1974).Google Scholar
  11. 11.
    C. Sivaram, K. P. Sinha, and E. A. Lord,Curr. Sci. 44, 143 (1975).Google Scholar
  12. 12.
    R. Utiyama,Phys. Rev. Lett. 101, 1597 (1956).Google Scholar
  13. 13.
    C. N. Yang and R. L. Mills,Phys. Rev. 96, 191 (1954).Google Scholar
  14. 14.
    C. Sivaram and K. P. Sinha,Nuovo Cimento Lett. 13, 357 (1975).Google Scholar
  15. 15.
    A. Salam,ICTP Preprint No. 55 (1974).Google Scholar
  16. 16.
    J. R. Schrieffer,Theory of Superconductivity, Benjamin, New York (1964).Google Scholar
  17. 17.
    J. P. Hsu and E. C. G. Sudarshan,Phys. Rev. D 9, 1678 (1974).Google Scholar
  18. 18.
    C. Sivaram and K. P. Sinha,Curr. Sci. 43, 165 (1974).Google Scholar
  19. 19.
    C. Sivaram and K. P. Sinha,Prog. Theor. Phys. (Kyoto)55, 1288 (1976).Google Scholar
  20. 20.
    C. Sivaram and K. P. Sinha,Nuovo Cimento Lett. 9, 704 (1974).Google Scholar
  21. 21.
    J. Bekenstein,Phys. Rev. D 11, 2072 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • K. P. Sinha
    • 1
  • C. Sivaram
    • 1
  • E. C. G. Sudarshan
    • 1
  1. 1.Indian Institute of ScienceBangaloreIndia

Personalised recommendations