Boundary-Layer Meteorology

, Volume 73, Issue 1–2, pp 1–14 | Cite as

Search for finite dimensional attractors in atmospheric turbulence

  • Rudolf O. Weber
  • Peter Talkner
  • Gérard Stefanicki
  • Luc Arvisais


The question is investigated whether the dynamics of turbulent wind fields in the atmospheric boundary layer can be satisfactorily described by a low-dimensional deterministic system. Special emphasis is laid on the detection of a possibly existing, underlying strange attractor. Fast response wind measurements of an ultrasonic anemometer with a sampling rate of 21 Hz were carried out over periods of several days in the near surface boundary layer. The correlation dimension of the resulting time series, several million data points long, is estimated by means of the Grassberger-Procaccia algorithm. No sign of a low dimensional attractor can be detected. By comparison with different types of random noise, the existence of an attractor with dimension lower than six can be excluded in the present data sets.


Boundary Layer Random Noise Wind Field Surface Boundary Atmospheric Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Essex, C., Lookman, T., and Nerenberg, M. A. H.: 1987, ‘The Climate Attractor over Short Timescales’,Nature 326, 64–66.Google Scholar
  2. Fraedrich, K.: 1986, ‘Estimating the Dimensions of Weather and Climate Attractors’,J. Atmos. Sci. 43, 419–432.Google Scholar
  3. Grassberger, P.: 1986, ‘Do Climatic Attractors Exist?’,Nature 323, 609–612.Google Scholar
  4. Grassberger P. and Procaccia, I.: 1983, ‘Characterization of Strange Attractors’,Phys. Rev. Lett. 50, 346–349 and ‘Measuring the Strangeness of Strange Attractors’,Physica D,9, 189–208.Google Scholar
  5. Hentschel, H. G. E. and Procaccia, I.: 1983, ‘The Infinite Number of Generalized Dimensions of Fractals and Strange Attractors’,Physica D 9, 435–444.Google Scholar
  6. Keppenne, C. L. and Nicolis, C.: 1989, ‘Global Properties and Local Structure of the Weather Attractor over Western Europe’,J. Atmos. Sci. 46, 2356–2370.Google Scholar
  7. Lorenz, E. N.: 1963, ‘Deterministic Nonperiodic Flow’,J. Atmos. Sci. 20, 130–141.Google Scholar
  8. Kolmogorov, A. N.: 1941, ‘The Local Structure of Turbulence in an Incompressible Viscous Fluid for Very Large Reynolds Numbers’,Dokl. Akad. Nauk SSSR 30, 301–305.Google Scholar
  9. Mañé, R.: 1981, ‘On the Dimension of the Compact Invariant Sets of Certain Non-Linear Maps’, inLecture Notes in Mathematics, Vol. 898, Springer Verlag, New York, pp. 230–242.Google Scholar
  10. Manneville, P.: 1990,Dissipative Structures and Weak Turbulence, Academic Press, Boston.Google Scholar
  11. Nerenberg, M. A. H. and Essex, C.: 1990, ‘Correlation Dimension and Systematic Geometric Effects’,Phys. Rev. A 42, 7065–7074.Google Scholar
  12. Nicolis, C. and Nicolis, G.: 1984, ‘Is There a Climatic Attractors?’,Nature 311, 529–532.Google Scholar
  13. Percival, D. B. and Walden, A. T.: 1993,Spectral Analysis for Physical Applications, Cambridge University Press, Cambridge.Google Scholar
  14. Poveda-Jaramillo, G., and Puente, C. E.: 1993, ‘Strange Attractors in Atmospheric Boundary-Layer Turbulence’,Boundary-Layer Meteorol. 64, 175–197.Google Scholar
  15. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: 1992,Numerical Recipes in Fortran. The Art of Scientific Computing, Cambridge University Press, Cambridge.Google Scholar
  16. Priestley, M. B.: 1981,Spectral Analysis of Time Series. Volume 1: Univariate Time Series, Academic Press, London.Google Scholar
  17. Richardson, L. F.: 1992,Weather Prediction by Numerical Process, University Press, Cambridge.Google Scholar
  18. Ruelle, D.: 1990, ‘Deterministic Chaos: the Science and the Fiction’,Proc. R. Soc. London A 427, 241–248.Google Scholar
  19. Smith, L. A.: 1984, ‘Intrinsic Limitations on Dimension Calculations’,Physics Lett. A 133, 283–288.Google Scholar
  20. Takens, F.: 1981, ‘Detecting Strange Attractors in Turbulence’, inLecture Notes in Mathematics, Vol. 898, Springer Verlag, New York, pp. 366–381.Google Scholar
  21. Temam, R.: 1989,Infinite Dimensional Systems in Mechanics and Physics, Springer, Berlin.Google Scholar
  22. Theiler, J.: 1986, ‘Spurious Dimensions from Correlation Algorithms Applied to Limited Time-Series Data’,Phys. Rev. A 34, 2427–2432.Google Scholar
  23. Tsonis, A. A. and Elsner, J. B.: 1988, ‘The Weather Attractor over Very Short Time Scales’,Nature 333, 545–547.Google Scholar
  24. Tsonis, A. A.: 1992,Chaos from Theory to Applications, Plenum Press, New York (1992), pp. 274.Google Scholar
  25. Tsonis, A. A., Elsner, J. B., and Georgakakos, K. P.: 1993, ‘Estimating the Dimension of Weather and Climate Attractors: Important Issues about the Procedure and Interpretation’,J. Atmos. Sci. 50, 2549–2555.Google Scholar
  26. Zeng, X., Pielke, R. A., and Eykholt, R.: 1992, ‘Estimating the Fractal Dimension and the Predictability of the Atmosphere’,J. Atmos. Sci. 49, 649–659.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Rudolf O. Weber
    • 1
  • Peter Talkner
    • 1
  • Gérard Stefanicki
    • 1
  • Luc Arvisais
    • 1
  1. 1.Paul Scherrer InstituteVilligen PS1Switzerland

Personalised recommendations