Foundations of Physics

, Volume 5, Issue 3, pp 543–553 | Cite as

Illustrations of a dynamical theory of the ether

  • J. H. Whealton
Article

Abstract

The Schrödinger and Klein-Gordon equations for free, structureless particles are derived classically from two different continuum approximations to a Boltzmann equation for the trace component of a mixture. The majority component is designated as the ether. Deviations from these continuum approximations (rarefied ether) yield deviations from the Schrödinger and Klein-Gordon equations which are shown explicitly.

Keywords

Ether Boltzmann Equation Dynamical Theory Continuum Approximation Yield Deviation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Maxwell,Phil. Mag. 19, 19 (1860);20, 21 (1860), reprinted inCollected Works (Dover, New York, 1965), Vol. 1, p. 377, and inKinetic Theory I, S. G. Brush, ed. (Pergamon, Oxford, 1965), p. 148.Google Scholar
  2. 2.
    J. C. Maxwell,Phil. Trans. R. Soc. London 157, 49 (1867);Phil. Mag. 32, 390 (1866), reprinted inCollected Works (Dover, New York, 1965), Vol. 2, p. 26, and inKinetic Theory II, S. G. Brush, ed. (Pergamon, Oxford, 1966), p. 23.Google Scholar
  3. 3.
    P. Langevin,Ann. Chim. Phys. 5, 245 (1905), translated in E. W. McDaniel,Collision Phenomena in Ionized Gases (Wiley, New York, 1964), Appendix II.Google Scholar
  4. 4.
    H. R. Hassé,Phil. Mag. 1, 139 (1926).Google Scholar
  5. 5.
    G. H. Wannier,Statistical Physics (Wiley, New York, 1966), p. 457.Google Scholar
  6. 6.
    L. de Broglie,Comp. Rend. 183, 447 (1926).Google Scholar
  7. 7.
    L. de Broglie,Compt. Rend. 184, 273 (1927).Google Scholar
  8. 8.
    L. de Broglie,J. Phys. Radium (6)8, 225 (1927).Google Scholar
  9. 9.
    L. de Broglie,Comp. Rend. 234, 265 (1952).Google Scholar
  10. 10.
    L. de Broglie,Comp. Rend. 235, 557, 1345, 1453 (1952).Google Scholar
  11. 11.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952).Google Scholar
  12. 12.
    D. Bohm,Progr. Theor. Phys. 9, 273 (1953).Google Scholar
  13. 13.
    D. Bohm and J. P. Vigier,Phys. Rev. 96, 208 (1954).Google Scholar
  14. 14.
    N. Wiener and A. Siegel,Phys. Rev. 91, 1551 (1953).Google Scholar
  15. 15.
    N. Wiener and A. Siegel,Nuovo Cimento Suppl. 2(4), 982 (1955).Google Scholar
  16. 16.
    P. Braffort and C. Tzara,Compt. Rend. 239, 157 (1954).Google Scholar
  17. 17.
    A. Siegel,Synthese 14, 171 (1962).Google Scholar
  18. 18.
    J. M. Janch and C. Piron,Helv. Phys. Acta 36, 827 (1963).Google Scholar
  19. 19.
    P. Braffort, M. Surdin, and A. Taroni,Compt. Rend. 261, 4339 (1965).Google Scholar
  20. 20.
    T. Marshal,Proc. Cambr. Phil. Soc. 61, 537 (1965).Google Scholar
  21. 21.
    R. C. Bownet,Can. J. Phys. 43, 619 (1965).Google Scholar
  22. 22.
    J. S. Bell,Rev. Mod. Phys. 38, 447 (1966).Google Scholar
  23. 23.
    D. Bohm and J. Bub,Rev. Mod. Phys. 38, 453 (1966).Google Scholar
  24. 24.
    R. Furth,Z. Physik 81, 143 (1933).Google Scholar
  25. 25.
    I. Fényes,Z. Physik 132, 81 (1952).Google Scholar
  26. 26.
    W. Weizel,Z. Physik 134, 264 (1953);135, 270 (1953);136, 582 (1954).Google Scholar
  27. 27.
    D. Kershaw,Phys. Rev. 136, B1850 (1964).Google Scholar
  28. 28.
    G. G. Comisar,Phys. Rev. 138, B1332 (1965).Google Scholar
  29. 29.
    E. Nelson,Phys. Rev. 150, 1079 (1966).Google Scholar
  30. 30.
    E. Nelson,Dynamical Theories of Brownian Motion (Princeton Univ. Press, Princeton, New Jersey, 1967).Google Scholar
  31. 31.
    A. F. Kracklauer,Phys. Rev. D 10, 1358 (1974).Google Scholar
  32. 32.
    J. von Neumann,The Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, New Jersey, 1955).Google Scholar
  33. 33.
    L. Boltzmann,Ber. Akad. Wiss. Vienna II 66, 275 (1872); translated in S. G. Brush,Kinetic Theory II (Pergamon, Oxford, 1966), p. 88.Google Scholar
  34. 34.
    J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases (North Holland, Amsterdam, 1972).Google Scholar
  35. 35.
    D. Burnett,Proc. London Math. Soc. 39, 385 (1935).Google Scholar
  36. 36.
    C. S. Wang-Chang and G. E. Uhlenbeck, inStudies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1970), Vol. V.Google Scholar
  37. 37.
    T. Kihara,Rev. Mod. Phys. 25, 844 (1953).Google Scholar
  38. 38.
    E. A. Mason and H. W. Schamp,Ann. Phys. (N.Y.)4, 233 (1958).Google Scholar
  39. 39.
    H.-S. Hahn and E. A. Mason,Phys. Rev. A 7, 1407 (1973).Google Scholar
  40. 40.
    J. H. Whealton and E. A. Mason,Ann. Phys. (N.Y.)84, 8 (1974).Google Scholar
  41. 41.
    H. Grad, inHandbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1958), Vol. 12, p. 205 ff.Google Scholar
  42. 42.
    H. Grad,Phys. Fluids 6, 147 (1963).Google Scholar
  43. 43.
    H. Grad,Rarefied Gas Dynamics (Academic Press, New York, 1963), Vol. 1, p. 26.Google Scholar
  44. 44.
    F. B. Pidduck,Proc. London Math. Soc. 15, 89 (1915).Google Scholar
  45. 45.
    S. Chapman,Phil. Trans. R. Soc. 216, 279 (1916).Google Scholar
  46. 46.
    D. Enskog, Dissertation, Uppsala 1917, translated in S. G. Brush,Kinetic Theory III (Pergamon, Oxford, 1972), p. 125.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • J. H. Whealton
    • 1
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBoulder

Personalised recommendations