Boundary-Layer Meteorology

, Volume 69, Issue 3, pp 221–247 | Cite as

On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration — A case study

  • Urs Neu
  • Thomas Künzle
  • Heinz Wanner


Numerous tethered balloon soundings which measured meteorological parameters and ozone concentration during the POLLUMET field experiments are investigated. They give indications of the influence of ozone conservation in the nocturnal residual layer (RL) on the development of the near surface ozone concentration of the next day. Mixing down from the RL to the surface is simulated by a simple model based on transilient turbulence theory, using measured profiles as initial values or model verification. The cases investigated show that the ozone mixed down from the RL contributes 50–70% to the maximum concentration near the surface on the following day, the rest coming from chemical production and possibly advection. Various features of exchange characteristics between the RL and the nocturnal boundary layer, (NBL) are described by the analysis of the soundings. It can be shown that the vertical exchange situation during the night can have a considerable influence on the ozone concentration of the following day.


Ozone Advection Ozone Concentration Meteorological Parameter Model Verification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. I. R. Inc.: 1986, ‘ADAS Models AIR-3A, AIR-3B and AIR-3C: Operation and Technical Reference Manual’, Boulder, CO.Google Scholar
  2. Baumbach, G.: 1990, ‘Luftreinhaltung’, Berlin/New York/Heidelberg, Springer, 432 pp.Google Scholar
  3. Baumbach, G., Steisslinger, B., Grauer, A., Semmler, R., Wanner, H., Neu, U. and Künzle, T.: 1993, ‘Tethersonde Measuring System for Detection of O3, NO2, Hydrocarbon Concentration and Meteorological Parameters in the Lower Planetary Boundary Layer’,Meteorol. Zeitschrift N. F.2, 178–188.Google Scholar
  4. Beyrich, F. and Klose, B.: 1988, ‘Some Aspects of Modeling Low-Level Jets’,Boundary Layer Meteorol. 43, 1–14.Google Scholar
  5. Blackadar, A. K.: 1957, ‘Boundary Layer Wind Maxima and their Significance for the Growth of Nocturnal Inversions’Bull. Amer. Meteorol. Soc. 38, 283–290.Google Scholar
  6. De Bruin, H. A. R., Kohsiek, W., and Van den Hurk B. J. J. M.: 1993, ‘Verification of Some Methods to Determine the Fluxes of Momentum, Sensible Heat, and Water Vapour Using Standard Deviation and Structure Parameter of Scalar Meteorological Quantities’,Boundary Layer Meteorol. 63, 231–258.Google Scholar
  7. Finnigan, J. J.: 1988, ‘Kinetic Energy Transfer between Internal Gravity Waves and Turbulence’,J. Atmos. Sci. 45, 486–505.Google Scholar
  8. Finnigan, J. J. and Einaudi, F.: 1981, ‘The Interaction between an Internal Gravity Wave and the Planetary Boundary Layer’,Quart. J. Meteorol. Soc. 107, 807–832.Google Scholar
  9. Fitzjarrald, D. R. and Lenschow, D. H.: 1983, ‘Mean Concentration and Flux Profiles for Chemically Reactive Species in the Atmospheric Surface Layer’,Atmos. Environ. 17 2505–2512.Google Scholar
  10. Fleuti, E.: 1990, ‘Untersuchungen über die Messfühlergenauigkeit des Sondiersystems TS-3A1’,Bern, Geographisches Institut Univ. Bern, Diplomarbeit.Google Scholar
  11. Fua, P., Chimonas, G., Einaudi, F., and Zeman O.: 1982, ‘An Analysis of Wave Turbulence Interaction’,J. Atmos. Sci. 39, 2450–2463.Google Scholar
  12. Gao, W., Wesley, M. L. and Lee, I. Y.: 1991, ‘A Numerical Study of the Effect of Air Chemistry on Fluxes of NO, NO2 and O3 Near the Surface’,J. Geophys. Res. 96, 18761–18769.Google Scholar
  13. Gossard, E. E., Gaynor, E. J., Zamora, R. J. and Neff, W. D.: 1985, ‘Fine Structure of Elevated Stable Layers Observed by Sounder and In Situ Tower Sensors’,J. Atmos. Sci. 42, 2156–2169.Google Scholar
  14. Harrison, R. M. Holman, C. D., McCourtney, H. A. and McIlvenn, J. F. R.: 1978, ‘Nocturnal Depletion of Photochemical Ozone at a Rural Site’Atmos. Environ. 12, 2021–2026.Google Scholar
  15. Hicks, B. B., Matt, D. R. and McMillen, R. T.: 1989, ‘A Micrometeorological Investigation of Surface Exchange of O3, SO2 and NO2: A Case Study’,Boundary-Layer Meteorol. 47, 321–336.Google Scholar
  16. Kim, J. and Mahrt, L.: 1992, ‘Simple Formulation of Turbulent Mixing in the Stable Free Atmosphere and Nocturnal Boundary Layer’,Tellus,44A, 381–394.Google Scholar
  17. Kramm, G., Müller, H., Fowler, D., Höfken, K. D., Meixner, F. X. and Schaller, E.: 1991, ‘A Modified Profile Method for Determining the Vertical Fluxes of NO, NO2, Ozone and HNO3 in the Atmospheric Surface Layer’,J. Atmosph. Chem. 13, 265–288.Google Scholar
  18. Kunkel, K. E. and Walters, D. L.: 1981, ‘Intermittent Turbulence in Measurements of the Temperature Structure Parameter under Very Stable Conditions’,Boundary-Layer Meteorol. 22, 49–60.Google Scholar
  19. Kurzeija, R. J., Berman, S. and Weber, A. H.: 1991, ‘A Climatological Study of the Nocturnal Planetary Boundary Layer’,Boundary-Layer Meteorol. 54, 105–128.Google Scholar
  20. Mahrt, L.: 1985, ‘Vertical Structure and Turbulence in the Very Stable Boundary Layer’,J. Atmos. Sci. 42, 2333–2349.Google Scholar
  21. Mahrt, L.: 1989, ‘Intermittency of Atmospheric Turbulence’J. Atmos. Sci. 46 79–95.Google Scholar
  22. Mahrt, L., Heald, R. C., Lenschow, D. H., Stakov, B. B. and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’,Boundary-Layer Meteorol. 17, 247–264.Google Scholar
  23. McKeen, S., Hsie, E.-Y., Trainer, M., Tallamrau, R. and Liu, S. C.: 1991, ‘A Regional Model Study of the Ozone Budget in the Eastern United States’,J. Geophys. Res. 96, 10809–10845.Google Scholar
  24. Nappo, C. J.: 1991, ‘Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain’,Boundary-Layer Meteorol. 54, 69–87.Google Scholar
  25. Nieuwstadt, F. T. M.: 1984, ‘The Turbulent Structure of the Stable, Nocturnal Boundary Layer’,J. Atmos. Sci. 41, 2202–2216.Google Scholar
  26. Oke, T. R.: 1987, ‘Boundary Layer Climates’, 2nd ed.,London and New York, Methuen, 435 pp.Google Scholar
  27. Padman, L. and Jones, I. S. F.: 1985, ‘Richardson Number Statistics in the Seasonal Thermocline’,J. Phys. Oceanogr. 15, (7), 844–854.Google Scholar
  28. Panofsky, H. A. and Dutton, J. A.: 1984, ‘Atmospheric Turbulence’,New York, John Wiley & Sons, 397 pp.Google Scholar
  29. Schenkel, A. and Broder, B.: 1982, ‘Interference of Some Trace Gases with Ozone Measurement by the Kl-Method’,Atmos. Environ. 16, 2187–2190.Google Scholar
  30. Schmidt, R. W. H.: 1989, ‘Eine schnelle Ozonsonde zur Messung von Ozonflüssen’,Master's Thesis, Univ. of Bonn. Google Scholar
  31. Semmler, R.: 1991, ‘Aufbau und Erprobung eines Probenahmesystems zur Bestimmung organischer Stoffe in Aussenluft’,Stuttgart, Inst. f. Verfahrenstechnik u. Dampfkesselwesen Univ. Stuttgart, Dipl. arbeit Nr. 2396.Google Scholar
  32. Sillman, S., Logan, J. A. and Wofsy S. C.: 1990, ‘A Regional Scale Model for Ozone in the United States With Subgrid Representation of Urban and Power Plant Plumes’,J. Geophys. Res. 95, 5731–5748.Google Scholar
  33. Smedman, A.: 1988, ‘Observations of a Multi-Level Turbulence Structure in a Very Stable Boundary Layer’,Boundary Layer Meteorol.,44, 231–253.Google Scholar
  34. Steisslinger, B. and Baumoach, G.: 1990, ‘Vertikalprofilmessungen von O3, NO2 und SO2 bis 500 m über Grund mit einem. Fesselballonsystem’,Düsseldorf, VDI-Berichte Nr. 838, 527–542.Google Scholar
  35. Strozzi, T.: 1991, ‘Untersuchungen über die Messfühlergenauigkeit der Ozonsonde OZ-3A-T’,Bern, Geographisches Institut Univ. Bern Seminararbeit.Google Scholar
  36. Stull, R. B.: 1988, ‘An Introduction to Boundary Layer Meteorology’,Dordrecht, Kluwer Academic Publishers, 666 pp.Google Scholar
  37. Stull, R. B.: 1993, ‘Review of Non-local Mixing in Turbulent Atmospheres: Transilient Turbulence Theory’,Boundary-Layer Meteorol. 62, 21–96.Google Scholar
  38. Stull, R. B. and Driedonks, A. G. M.: 1987, ‘Applications of the Transilient Turbulence Parameterization to Atmospheric Boundary-Layer Simulations’,Boundary-Layer Meteorol. 40, 209–239.Google Scholar
  39. Vilà-Guerau de Arrellano, J. and Duynkerke, P. G.: 1992, ‘Influence of Chemistry on the Flux-Gradient Relationship for the NO-O3-NO2 System’,Boundary-Layer Meteorol. 61, 375–387.Google Scholar
  40. Wanner, H., Künzle, T., Neu, U., Ihly, B., Baumbach, G. and Steisslinger, B. 1993, ‘On the Dynamics of Photochemical Smog over the Swiss Middleland—Results of the First POLLUMET Field Experiment’,Meteorol. Atmos. Phys. 51, 117–138.Google Scholar
  41. Weber, A. H. and Kurzeja, R. J.: 1991, ‘Nocturnal Planetary Boundary Layer Structure and Turbulence Episodes during the Project STABLE Field Program’,J. Appl. Meteorol. 30, 1117–1133.Google Scholar
  42. Weber, M.: 1992, ‘The Influence of Chemical Reactions on the Calculation of NO2 and O3 Deposition Fluxes from Eddy-Correlation Measurements’,lecture at XVII General Assembly of Europ. Geophys. Soc. Edinburgh.Google Scholar
  43. Weisel, E. L.: 1986, ‘Untersuchung eines niedertroposphärischen Strahlstroms im Alpenvorland’,Dissert. Phys. Fak. Frankfurt, 145 pp.Google Scholar
  44. Winkler, K.: 1980, ‘Störungen der nächtlichen Grenzschicht’,Meteorol. Rdsch. 33, 90–94.Google Scholar
  45. Zhang, Q., and Stull, R. B.: 1992, ‘Alternative Nonlocal Descriptions of Boundary-Layer Evolution’,J. Atmos. Sci. 49, 2267–2281.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Urs Neu
    • 1
  • Thomas Künzle
    • 1
  • Heinz Wanner
    • 1
  1. 1.Institute of GeographyUniversity of BerneBernSwitzerland

Personalised recommendations