Cucurbituril: Supramolecular perspectives for an old ligand

  • P. Cintas
Review Article

Abstract

This report deals with the preparation and inclusion properties of the synthetic receptor cucurbituril. Although its synthesis dates back to the beginning of the century, complex formation with this ligand has not been studied until quite recently. The most important feature of this macropolycyclic structure is the presence of an internal cavity with a diameter comparable to that of α-cyclodextrin. The rigid cavity of cucurbituril constitutes a rather apolar, lipophilic region, but the portals to the interior contain carbonyl groups as binding sites for ions. Bifunctional and amphiphilic substances can be successfully encapsulated. Similar to other cavitands, inclusion may be interpreted in terms of hydrophobic interactions by displacing solvent water molecules upon complexation, and of ion-dipole attractions with the urea moieties. Further profitable uses of cucurbituril as well as the preparation of attractive analogs are currently under research.

Key words

Cucurbituril glycoluril host-guest complexes inclusion compounds self-assembly molecular cavities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. 1.
    R. Behrend, E. Meyer and F. Rusche:Liebigs Ann. Chem. 339, 1 (1905).Google Scholar
  2. 2.
    A.R. Butler and E. Leitch:J. Chem. Soc., Perkin Trans. 2, 103 (1980).Google Scholar
  3. 3.
    A.R. Butler, I. Hussain and K.M. Peet:J. Chem. Soc., Perkin Trans. 2, 320 (1981).Google Scholar
  4. 4.
    For a discussion on the mechanism of formation of bicyclic ureas and related sugar derivatives: M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez, J.C. Palacios and C. Valencis:Tetrahedron 49, 2655 (1993) and references cited therein.Google Scholar
  5. 5.
    W.A. Freeman, W.L. Mock and N.-Y. Shih:J. Am. Chem. Soc. 103, 7367 (1981).Google Scholar
  6. 6.
    W.A. Freeman:Acta Crystallogr., Sect. B 40, 382 (1984).Google Scholar
  7. 7.
    D.H. Busch:J. Incl. Phenom. 12, 389 (1992).Google Scholar
  8. 8.
    S. Anderson, H.L. Anderson and J.K.M. Sanders:Acc. Chem. Res. 26, 469 (1993).Google Scholar
  9. 9.
    W.L. Mock and N.-Y. Shih:J. Org. Chem. 48, 3618 (1983).Google Scholar
  10. 10.
    For a recent and excellent review on molecules with large cavities: C. Seel and F. Vögtle:Angew. Chem., Int. Ed. Engl 31, 528 (1992).Google Scholar
  11. 11.
    J.R. Moran, S. Karbach and D.J. Cram:J. Am. Chem. Soc. 104, 5826 (1982).Google Scholar
  12. 12.
    W.L. Mock and N.-Y. Shih:J. Org. Chem. 51, 4440 (1986).Google Scholar
  13. 13.
    N.-Y. Shih:Ph.D. thesis, University of Illinois at Chicago (1981);Diss. Abstr. Int. B 42, 4071 (1982).Google Scholar
  14. 14.
    H.-J. Buschmann, E. Cleve and E. Schollmeyer:Inorg. Chim. Acta 103, 93 (1992).Google Scholar
  15. 15.
    W.L. Mock and N.-Y. Shih:J. Am. Chem. Soc. 110, 4706 (1988).Google Scholar
  16. 16.
    Scales based on polarity, lipo- and hydrophobicity are often misused as equivalents. Perhaps a more appropriate and unambiguous term is solvophobicity. Some reactions appear to be dependent on this parameter derived from the guest solubility, rather than of the solvent polarity: H.-J. Schneider and N.K. Sangwan:J. Chem. Soc., Chem. Commun., 1787 (1986).Google Scholar
  17. 17.
    W.L. Mock and N.-Y. Shih:J. Am. Chem. Soc. 111, 2697 (1989).Google Scholar
  18. 18.
    W.L. Mock and J. Pierpont:J. Chem. Soc., Chem. Commun., 1509 (1990).Google Scholar
  19. 19.
    M. Avalos, R. Babiano, P. Cintas, J.L. Jiménez and J.C. Palacios: unpublished results.Google Scholar
  20. 20.
    H.-J. Buschmann:Melliand Textilber. 71, 124 (1990).Google Scholar
  21. 21.
    H.-J. Buschmann, A. Gardberg and E. Schollmeyer:Textilveredlung 26, 153 (1991).Google Scholar
  22. 22.
    H.-J. Buschmann, D. Rader and E. Schollmeyer:Textilveredlung 26, 157 (1991).Google Scholar
  23. 23.
    H.-J. Buschmann, A. Gardberg, D. Rader and E. Schollmeyer:Textilveredlung 26, 160 (1991).Google Scholar
  24. 24.
    H.-J. Buschmann and E. Schollmeyer:J. Incl. Phenom. 14, 91 (1992).Google Scholar
  25. 25.
    B.G. Cox, J. García-Rosas and H. Schneider:J. Am. Chem. Soc. 103, 1384 (1981).Google Scholar
  26. 26.
    M.L. Bender and M. Komiyama:Cyclodextrin Chemistry, Springer-Verlag, Berlin-Heidelberg-New York, 1978, pp. 28–60.Google Scholar
  27. 27.
    W.L. Mock, T.A. Irra, J.P. Wepsiec and T.L. Manimaran:J. Org. Chem. 48, 3619 (1983).Google Scholar
  28. 28.
    A. Flinn, G.C. Hough, J.F. Stoddart and D.J. Williams:Angew. Chem., Int. Ed. Engl. 31, 1475 (1992).Google Scholar
  29. 29.
    C.D. Gutsche: inCalixarenes, Monographs in Supramolecular Chemistry, J.F. Stoddart (Ed.), The Royal Society of Chemistry, Cambridge, 1989, p. 26.Google Scholar
  30. 30.
    W.L. Mock, T. Manimaran, W.A. Freeman, R.M. Kuksuk, J.E. Maggio and D.H. Williams,J. Org. Chem. 50, 60 (1985).Google Scholar
  31. 31.
    R.P. Sijbesma, A.P.M. Kentgens, E.T.G. Lutz, J.H. van der Maas and R.J.M. Nolte:J. Am. Chem. Soc. 115, 8999 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • P. Cintas
    • 1
  1. 1.Department of Organic Chemistry, Faculty of SciencesUniversity of ExtremaduraBadajozSpain

Personalised recommendations