Foundations of Physics

, Volume 9, Issue 11–12, pp 939–946 | Cite as

A remark on the concavity of entropy

  • A. Wehrl


We investigate to what extent theorems about quantum mechanical or classical entropy can be generalized to functionals of the type ρ→Tr f(ρ), or ψ→∫f(ψ)dμ, respectively, wheref is an arbitrary concave function.


Entropy Concave Function Classical Entropy Arbitrary Concave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. P. Wigner and M. M. Yanase,Proc. Nat. Acad. Sci. (US) 49, 910 (1963).Google Scholar
  2. 2.
    R. Jost,Helv. Phys. Acta 20, 491 (1947).Google Scholar
  3. 3.
    O. W. Lanford and D. W. Robinson,J. Math. Phys. 9, 1120 (1968).Google Scholar
  4. 4.
    A. Uhlmann,Rostocker Physikalische Manuskripte 2, 45 (1977);Wiss. Z. KMU, Leipzig 27, 213 (1978).Google Scholar
  5. 5.
    N. G. van Kampen, Lecture Notes, Utrecht (1970).Google Scholar
  6. 6.
    B. Crell, T. de Paly, and A. Uhlmann,Wiss. Z. KMU Leipzig 27, 229 (1978).Google Scholar
  7. 7.
    A. Uhlmann,Rep. Math. Phys. 1, 147 (1970).Google Scholar
  8. 8.
    A. Wehrl,Rev. Mod. Phys. 50, 221 (1978).Google Scholar
  9. 9.
    J. Aczel, B. Forte, and C. T. Ng,Adv. Appl. Prob. 6, 131 (1974).Google Scholar
  10. 10.
    W. Ochs,Rep. Math. Phys. 8, 109 (1975).Google Scholar
  11. 11.
    A. Wehrl, Lectures at the CIME School in Bressanone (1976).Google Scholar
  12. 12.
    G. and G. Lassner, preprint, Dubna (1977).Google Scholar
  13. 13.
    J. Dixmier,Les algèbres d'opérateurs dans l'espace Hilbertien (Gauthier-Villars, Paris, 1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. Wehrl
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienViennaAustria

Personalised recommendations