Skip to main content
Log in

The motion of wavelets—An interpretation of the Schrödinger equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There are stable wavelets which satisfy the Schrödinger equation. The motion of a wavelet is determined by a set of ordinary differential equations. In a certain limit, a wavelet turns out to be the known representation of a classical material point. A de Broglie wave is constructed by superposing similar free wavelets. Conventional energy eigensolutions of the Schrödinger equation can be interpreted as ensembles of wavelets. If the dynamics of wavelets form the quantum mechanical counterpart of Newton's dynamics of particles, then conventional quantum mechanics is the counterpart of Gibbs's mechanics of ensembles. In this way, conventional quantum mechanics is reinterpreted on a deterministic basis. A difficulty of quantum field theory is predictable from this point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. de Broglie,Non-Linear Wave Mechanics (Elsevier Publishing Company, Amsterdam, 1960), English edition.

    Google Scholar 

  2. H. Margenau,Phil. Sci. 4, 337 (1937).

    Google Scholar 

  3. A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, London, 1965).

    Google Scholar 

  4. E. T. Whittacker,Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, London, 1965), 4th ed.

    Google Scholar 

  5. J. W. Gibbs,Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, 1902; reprinted by Dover Publications, New York, 1960).

    Google Scholar 

  6. M. Born,Natural Philosophy of Cause and Chance (Dover Publications, New York, 1964), p. 66.

    Google Scholar 

  7. T. Koga,Introduction to Kinetic Theory (Pergamon Press, Oxford, 1970).

    Google Scholar 

  8. N. R. Hanson,The Concept of the Positron (Cambridge University Press, London, 1963), Chapter VI.

    Google Scholar 

  9. L. D. Landau and E. M. Lifshitz,Quantum Mechanics, Non-Relativistic Theory (Pergamon Press, Oxford, 1965), 2nd ed., Section 17.

    Google Scholar 

  10. J. A. Silva, thesis, University of Paris, 1960.

  11. E. Wigner,Phys. Rev. 40, 749 (1932).

    Google Scholar 

  12. H. Mori, I. Openheim, and J. Ross, inStudies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland Publishing Company, Amsterdam, 1962), Vol. I.

    Google Scholar 

  13. H. Margenau, Exclusion principle and measurement theory, inQuantum Theory of Atoms, Molecules, and Solid States, A Tribute to J. C. Slater, P. O. Löwdin, ed. (Academic Press, New York, 1966).

    Google Scholar 

  14. T. Koga, PIBAL Report No. 69–17 (Polytechnic Institute of Brooklyn, 1969).

  15. P. A. M. Dirac,The Principles of Quantum Mechanics (Oxford University Press, London, 1967), 4th ed., Section 31.

    Google Scholar 

  16. W. Heisenberg,The Physical Principles of the Quantum Theory (University of Chicago Press, Chicago, 1930, reprinted by Dover Publications, New York), pp. 64, 65.

    Google Scholar 

  17. W. Duane,Proc. Natl. Acad. Sci. (U.S.) 9, 158 (1923).

    Google Scholar 

  18. W. Heitler,The Quantum Theory of Radiation (Oxford University Press, London, 1954), 3rd ed.

    Google Scholar 

  19. J. J. Sakurai,Advanced Quantum Mechanics (Addison-Wesley Publishing Company, Reading, Mass., 1967).

    Google Scholar 

  20. D. Bohm,Causality and Chance in Modern Physics (Routledge & Kegan Paul Ltd., London, 1957), p. 112.

    Google Scholar 

  21. J. L. Park and H. Margenau,Intern. J. Theoret. Phys. 1, 211 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koga, T. The motion of wavelets—An interpretation of the Schrödinger equation. Found Phys 2, 49–78 (1972). https://doi.org/10.1007/BF00708619

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00708619

Keywords

Navigation