Journal of Atmospheric Chemistry

, Volume 22, Issue 1–2, pp 163–174 | Cite as

Ozone production due to emissions from vegetation burning

  • Günter Helas
  • Jürgen Lobert
  • Dieter Scharffe
  • Luise Schäfer
  • Johann Goldammer
  • Jean Baudet
  • Brou Ahoua
  • Ayité-Lô Ajavon
  • Jean-Pierre Lacaux
  • Robert Delmas
  • Meinrat O. Andreae


Ozone has been observed in elevated concentrations by satellites over areas previously believed to be ‘background’. There is meteorological evidence, that these ozone ‘plumes’ found over the Atlantic Ocean originate from vegetation fires on the African continent.

In a previous study (DECAFE-88), we have investigated ozone and assumed precursor compounds over African tropical forest regions. Our measurements revealed large photosmog layers at altitudes from 1.5 to 4 km. Both chemical and meteorological evidence point to savanna fires up to several thousand km upwind as sources.

Here we describe ozone mixing ratios observed over western Africa and compare ozone production ratios from different field measurement campaigns related to vegetation burning. We find that air masses containing photosmog ‘ingredients’ require several days to develop their oxidation potential, similar to what is known from air polluted by emissions from fossil fuel burning. Finally, we estimate the global ozone production due to vegetation fires and conclude that this source is comparable in strength to the stratospheric input.

Key words

ozone production pyrogenic pollutants West Africa 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., Browell, E. V., Garstang, M., Gregory, G. L., Harriss, R. C., Hill, G. F., Jacob, D. J., Pereira, M. C., Sachse, G. W., Setzer, A. W., Silva Dias, P. L., Talbot, R. W., Torres, A. L., and Wofsy, S. C., 1988, Biomass-burning emissions and associated haze layers over Amazonia.J. Geophys. Res. 93, 1509–1527.Google Scholar
  2. Andreae, M. O., Anderson, B. E., Collins, J. E., Gregory, G. L., Sachse, G. W., Shipham, M. C., Bradshaw, J. D., Davis, D. D., Kirchhoff, V. W. J. H., 1990, Influence of plumes from biomas burning on atmospheric chemistry over the equatorial Atlantic during CITE-3,EOS Trans. AGU 71, 1255.Google Scholar
  3. Andreae, M. O., Chapuis, A., Cros, B., Fontan, J., Helas, G., Justice, C., Kaufman, Y. J., Minga, A., Nganga, D., 1992, Ozone and Aitken nuclei over equatorial Africa: Airborne observations during DECAFE 88,J. Geophys. Res. 97, 6137–6148.Google Scholar
  4. Andreae, M. O., 1993, The influence of tropical biomass burning on climate and the atmospheric environment, in R. S. Oremland (ed.),Biogeochemistry of Global Change: Radiatively Active Trace Gases, Chapman & Hall, New York, NY, pp. 113–150.Google Scholar
  5. Andreae, M. O., Anderson, B. E., Bradshaw, J. D., Collins, J. E., Gregory, G. L., Sachse, G. W., and Shipham, M. C., 1994, Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE-3,J. Geophys. Res. 99, 12793–12808.Google Scholar
  6. Browell, E. V., Gregory, G. L., Harris, R. C., and Kirchhoff, V. W. J. H., 1988, Tropospheric ozone and aerosol distribution across the Amazon basin,J. Geophys. Res. 93, 1431–1451.Google Scholar
  7. Chatfield, R. B. and Delany, A. C., 1990, Convection links biomass burning to increased tropical ozone: however, models will tend to overpredict O3,J. Geophys. REs. 95, 18473–18488.Google Scholar
  8. Cros, B., Nganga, D., Minga, A., Fishman, J., and Bracket, V., 1992, Distribution of tropospheric ozone at Brazzaville, Congo, determined from ozonesonde measurements,J. Geophys. Res. 97, 12869–12875.Google Scholar
  9. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979, Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS,Nature 282, 253–256.Google Scholar
  10. Crutzen, P. J. and Andreae, M. O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,Science 250, 1669–1678.Google Scholar
  11. Delany, A. C., Haagenson, P., Walters, S., Wartburg, A. F., and Crutzen, P. J., 1985, Photochemically produced ozone in the emission of large scale tropical vegetation fires,J. Geophys. Res. 90, 2425–2429.Google Scholar
  12. Delmas, R., Lacaux, J. P., Menaut, J. C., Abbadie, L., LeRoux, X., Helas, G., and Lobert, J., 1995, Nitrogen compound emission from biomass burning in tropical African savanna, FOS/DECAFE 1991 experiment (Lamto, Ivory Coast),J. Atmos. Chem. 22, 175–193 (this issue).Google Scholar
  13. Evans, L. F., King, N. K., Packham, D. R., and Stephens, E. T., 1974, Ozone measurements in smoke from forest fires,Environ. Sci. Technol. 8, 75–76.Google Scholar
  14. Evans, L. F., Weeks, I. A., Eccleston, A. J., and Packham, D. R., 1977, Photochemical ozone in smoke from prescribed burning of forests,Environ. Sci. Technol. 11, 896–900.Google Scholar
  15. Fabian, P. and Pruchniewicz, P. G., 1977, Meridional distribution of ozone in the troposphere and its seasonal variations,J. Geophys. Res. 82, 2063–2073.Google Scholar
  16. Finlayson, B. J. and Pitts, Jr. J. N., 1976, Photochemistry of the polluted troposphere,Science 192, 111–119.Google Scholar
  17. Fishman, J., Watson, C. E., Larsen, J. C., and Logan, J. A., 1990, Distribution of tropospheric ozone determined from satellite data,J. Geophys. Res. 95, 3599–3617.Google Scholar
  18. Fontan, J., Druilhet, A., Benech, B., Lyra, R., and Cros, B., 1992, The DECAFE experiment: Overview and meteorology,J. Geophys. Res. 97, 6123–6136.Google Scholar
  19. Gidel, L. T. and Shapiro, M. A., 1980, General circulation model estimates of the net vertical flux of ozone in the lower stratosphere and the implications for the tropospheric ozone budget,J. Geophys. Res. 85, 4049–4058.Google Scholar
  20. Goldammer, J. G. (ed.), 1990,Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, Springer-Verlag, Berlin.Google Scholar
  21. Guicherit, R. and van Dop, H., 1977, Photochemical production of ozone in western Europe (1971–1975) and its relation to meteorology,Atmos. Environ. 11, 145–155.Google Scholar
  22. Hao, W. M., Liu, M.-H., and Crutzen, P. J., 1990, Estimates of annual and regional releases of CO2 and other trace gases to the atmosphere from fires in the tropics, based on FAO statistics for the period 1975–1980, in J. G. Goldammer (ed.),Fire in the Tropical Biota, Ecosystem processes and global challenges. Springer-Verlag, Berlin, pp. 440–462.Google Scholar
  23. Helas, G., Andreae, M. O., Fontan, J., Cros, B., and Delmas, R., 1989, Ozone measurements in equatorial Africa during DECAFE 88. Proc. of the Quadrennial Ozone Symposium 1988; in R. D. Bojkov and P. Fabian (eds.),Ozone in the Atmosphere, A. Deepak Publishing, Hampton, VA., pp. 430–432.Google Scholar
  24. Helas, G., Lacaux, J. P., Delmas, R., Scharffe, D., Lobert, J., Goldammer, J., and Andreae, M. O., 1992, Ozone as biomass burning product over Africa,Fresenius Environ. Bull. 1, 155–160.Google Scholar
  25. Helas, G., Lobert, J., Scharffe, D., Schäfer, L., Goldammer, J., Baudet, J., Ajavon, A.-L., Ahoua, B., Lacaux, J.-P., Delmas, R., and Andreae, M. O., 1995, Airborne measurements of savanna fire emissions and the regional distribution of pyrogenic pollutants over western Africa,J. Atmos. Chem. 22, 217–239 (this issue).Google Scholar
  26. Houghton, J. T., Jenkins, G. J., and Ephraums, J. J. (eds.), 1990,Climate Change, The IPCC Scientific Assessment, Cambridge University Press, Cambridge.Google Scholar
  27. Huntzicker, J. J. and Johnson, R. L., 1979, Investigation of an ambient interference in the measurement of ozone by ultraviolet absorption photometry.Environ. Sci. Technol. 13, 1414–1416.Google Scholar
  28. Kaufman, Y. J., Setzer, A., Ward, D., Tanre, D., Holben, B. N., Menzel, P., Pereira, M. C., and Rasmussen, R., 1992, Biomass burning airborne and spaceborne experiment in the Amazonas (BASE-A),J. Geophys. Res. 97, 14581–14599.Google Scholar
  29. Kirchhoff, V. W. J. H., Marinho, E. V. A., Dias, P. L. S., Calheiros, R., Andre, R., and Volpe, C., 1989, O3 and CO from burning sugar cane,Nature 339, 264.Google Scholar
  30. Komarek, E. V., 1972, Lightning and fire ecoogy in Africa, inProc. Tall Timbers Fire Ecology Conference 11, 473–511.Google Scholar
  31. Lacaux, J.-P., Brustet, J. M., Delmas, R., Menaut, J.-C., Baudet, J., Andreae, M. O., and Helas, G., 1995, Biomass burning in the tropical savannas of Ivory Coast: a overview of the field experiment Fire of Savannas (FOS/DECAFE 91).J. Atmos. Chem. 22, 195–216 (this issue).Google Scholar
  32. Liu, S. C., Trainer, M., Fehsenfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D. W., Hübler, G., and Murphy, P. C., 1987, Ozone production in the rural troposphere and the implications for regional and global ozone distributions,J. Geophys. Res. 92, 4191–4207.Google Scholar
  33. Lobert, J., 1989, Verbrennungen pflanzlicher Biomasse als Quelle atmosphärischer Spurengase: Cyanoverbindungen, CO, CO2 und NOx. Dissertation, Johannes-Gutenberg Universität, Mainz.Google Scholar
  34. Lobert, J. M., Scharffe, D. H., Hao, W.-M., Kuhlbusch, T. A., Seuwen, R., Warneck, P., and Crutzen, P. J., 1991, Experimental evaluation of biomass burning emissions: nitrogen and carbon containing compounds. In J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, pp. 289–304.Google Scholar
  35. Logan, J. A., Prather, M. J., Wofsy, S. C., and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective,J. Geophys. Res. 86, 7210–7254.Google Scholar
  36. Logan, J. A. and Kirchhoff, V. W. J. H., 1986, Seasonal variations of tropospheric ozone at Natal, Brazil,J. Geophys. Res. 91, 7875–7881.Google Scholar
  37. Marenco, A. and Said, F., 1989, Meridional and vertical ozone distribution in the background troposphere (70° N-60° S; 0–12 km altitude) from scientific aircraft measurements during the STRATOZ III experiment (June 1984),Atmos. Environ. 23, 201–214.Google Scholar
  38. Marenco, A., Medale, J. C., and Prieur, S., 1990, Study of tropospheric ozone in the tropical belt (Africa, America) from STRATOZ and TROPOZ campaigns,Atmos. Environ. 24A, 2823–2834.Google Scholar
  39. Menaut, J. C. and César, J., 1979, Structure and primary productivity of Lamto savanna, Ivory Coast,Ecology 60, 1197–1210.Google Scholar
  40. Menaut, J. C., Abbadie, L., Lavenu, F., Loudjani, P., Podaire, A., 1991, Biomass burning in West African savannas, in J. S. Levine (ed.),Global Biomass Burning, The MIT Press, Cambridge, MA, pp. 133–142.Google Scholar
  41. Meyer, C. P., Elsworth, C. M., and Galbally, I. E., 1988, Baseline 88, Research reports, pp. 28–37.Google Scholar
  42. Mohnen, V. A., 1977, The issue of stratospheric ozone intrusion, Atmospheric Sciences Research Center, Publ. No. 428, New York State University, Albany, New York, U.S.A.Google Scholar
  43. Nastrom, G. D., 1977, Vertical and horizontal fluxes of ozone of troposphere from first year of GASP data,J. Appl. Meteorol. 16, 740–744.Google Scholar
  44. Oltmans, S. J., Komhyr, W. D., Franchois, P. R., Matthews, W. A., 1989, Tropospheric ozone: variations from surface and ECC ozonsonde observations, in R. D. Bojkov, and P. Fabian (eds.),Ozone in the Atmosphere, A. Deepak Publishing, Hampton, Va., U.S.A., pp. 539–543.Google Scholar
  45. Parrish, D. D., Holloway, J. S., Trainer, M., Murphy, P. C., Forbes, G. L., and Fehsenfeld, F. C., 1993, Export of North American ozone pollution to the North Atlantic Ocean,Science 259, 1436–1439.Google Scholar
  46. Pickering, K. E., Scala, J. R., Thompson, A. M., Tao, W.-K., and Simpson, J., 1992, A regional estimate of convective transport of CO from biomass burning,Geophys. Res. Lett. 19, 289–292.Google Scholar
  47. Piotrowicz, S. R., Boran, D. A., and Fischer, C. J., 1986, Ozone in the boundary layer of the equatorial Pacific Ocean,J. Geophys. Res. 91, 13113–13119.Google Scholar
  48. Seiler, W. and Conrad, R., 1987, Contribution of tropical ecosystems to the global budgets of trace gases, in R. Dickinson (ed.),Geophysiology of Amazonia, Wiley, New York, pp. 133–162Google Scholar
  49. Ward, D. E., 1990, Factors influencing the emission of gases and particulate matter from biomass burning, in J. G. Goldammer (ed.),Fire in the Tropical Biota, Ecosystem Processes and Global Challenges, Springer, Berlin, pp. 418–436.Google Scholar
  50. Warneck, P., 1988,Chemistry of the Natural Atmosphere, Academic Press, San Diego.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Günter Helas
    • 1
  • Jürgen Lobert
    • 1
  • Dieter Scharffe
    • 1
  • Luise Schäfer
    • 1
  • Johann Goldammer
    • 1
  • Jean Baudet
    • 2
  • Brou Ahoua
    • 3
  • Ayité-Lô Ajavon
    • 1
  • Jean-Pierre Lacaux
    • 4
  • Robert Delmas
    • 5
  • Meinrat O. Andreae
    • 1
  1. 1.Biogeochemistry, DepartmentMax Planck Institute for ChemistryMainzGermany
  2. 2.Institute Physique de l'AtmosphèreUniversité AbidjanCôte d'Ivoire
  3. 3.INSET/Genie Chimique, YamoussoukroCôte d'Ivoire
  4. 4.Centre de Recherche Atmosphérique de CNRS, CampistrousLannemezanFrance
  5. 5.Laboratoire d'AérologieUniversité Paul SabatierToulouseFrance

Personalised recommendations