Journal of Atmospheric Chemistry

, Volume 22, Issue 1–2, pp 67–80 | Cite as

Field study of the emissions of methyl chloride and other halocarbons from biomass burning in Western Africa

  • J. Rudolph
  • A. Khedim
  • R. Koppmann
  • B. Bonsang


A field study of trace gas emissions from biomass burning in Equatorial Africa gave methyl chloride emission ratios of 4.3×10−5±0.8×10−5 mol CH3Cl/mol CO2. Based on the global emission rates for CO2 from biomass burning we estimate a range of 226−904×109 g/y as global emission rate with a best estimate of 515×109 g/y. This is somewhat lower than a previous estimate which has been based on laboratory studies. Nevertheless, our emission rate estimates correspond to 10–40% of the global turnover of methyl chloride and thus support the importance of biomass burning as methyl chloride source. The emission ratios for other halocarbons (CH2Cl2, CHCl3, CCl4, CH3CCl3, C2HCl3, C2Cl4, F-113) are lower. In general there seems to be a substantial decrease with increasing complexity of the compounds and number of halogen atoms. For dichloromethane biomass burning still contributes significantly to the total global budget and in the Southern Hemisphere biomass burning is probably the most important source for atmospheric dichloromethane. For the global budgets of other halocarbons biomass burning is of very limited relevance.

Key words

biomass burning halocarbons hydrocarbons methylchloride emission ratios 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreae, M. O., 1991, Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, pp. 3–21.Google Scholar
  2. Bonsang, B., Lambert, G., and Boissard, C., 1991, Light hydrocarbon emissions from African savanna burnings, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, pp. 155–166.Google Scholar
  3. Crutzen, P. J., Heidt, L. E., Krasnec, J. P., Pollock, W. H., and Seiler, W., 1979, Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS,Nature 282, 253–256.Google Scholar
  4. Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A. F., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during the dry season,J. Atmos. Chem. 2, 233–256.Google Scholar
  5. Crutzen, P. J. and Andreae, M. O., 1990, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles,Science 250, 1669–1678.Google Scholar
  6. Fabian, P., 1986, Halogenated hydrocarbons in the atmosphere, in O. Hutzinger (ed.),The Handbook of Environmental Chemistry (Volume 4/Part A), Springer, New York, pp. 23–51.Google Scholar
  7. Fraser, P., Harris, R., Penkett, S., Makide, Y., and Sanhueza, E., 1991, Source gases: concentrations, emissions and trends, in D. L. Albritton, R. T. Watson, S. Solomon, R. F. Hampson, and F. Ormond (eds.),Scientific Assessment of Ozone Depletion: 1991 World Meteorological Organization Global Ozone and Monitoring, Project-Report 25, pp. 1.1–1.37.Google Scholar
  8. Greenberg, J. P., Zimmerman, P. R., Heidt, L., and Pollock, W., 1984, Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil,J. Geophys. Res. 89, 1350–1354.Google Scholar
  9. Hegg, D. A., Radke, L. A., Hobbs, P. V., Rasmussen, R. A., and Riggan, J. P., 1990, Emissions of some trace gases from biomass fires,J. Geophys. Res. 95, 5669–5675.Google Scholar
  10. Heidt, L., 1978, Whole air collection and analysis,Atmos. Technol. 9, 3–7.Google Scholar
  11. Isaksen, I. S. A., Hov, O., Penkett, S. A., and Semb, A., 1985, Model analysis of the measured concentrations of organic gases in the Norwegian Arctic,J. Atmos. Chem. 3, 3–27.Google Scholar
  12. Koppmann, R., Johnen, F. J., Plass-Dülmer, Ch., and Rudolph, J., 1993, The distribution of methyl chloride, dichloromethane, trichloroethene, and tetrachloroethene over the north and south Atlantic,J. Geophys. Res. 98, 20517–20526.Google Scholar
  13. Lacaux, J. P., Brustet, J. M., Delmas, R., Menaut, J. C., Baudet, J., Andreae, M. O., and Helas, G., 1991, DECAFE 91: Biomass burning in the tropical savannas of Ivory Coast. A general overview of the field experiment Fire of Savannas (FOS), in G. Angeletti, S. Beilke, and J. Slanina (eds.),Air Pollution Research Report 39, Comm. European Communities, Brussels, Belgium, pp. 81–86.Google Scholar
  14. Lobert, J. M., Scharffe, D. H., Hao, W.-M., Kuhlbusch, T. A., Seuwen, R., Warneck, P., and Crutzen, P., 1991, Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in J. S. Levine (ed.),Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, pp. 289–304.Google Scholar
  15. Marland, G., Rotty, R. M., and Treat, N. L., 1985, CO2 from fossil fuel burning: Global distribution of emissions,Tellus 37B, 243–258.Google Scholar
  16. Matusca, P., Koval, M., and Seiler, W., 1986, A high resolution GC-analysis method for determination of C2–C10 hydrocarbons in air samples,JHRCC & CC 9, 577–583.Google Scholar
  17. Pearson, C. R. (ed.), 1982, C1 and C2 halocarbons, inAnthropogenic Compounds, Springer, New York, pp. 69–88.Google Scholar
  18. Penkett, S. A., Derwent, R. G., Fabian, P., Borchers, R., and Schmidt, U., 1980, Methyl chloride in the stratosphere,Nature 283, 58–60.Google Scholar
  19. Prinn, R., Cunnold, D., Simmons, P., Alyea, F., Boldi, R., Crawford, A., Fraser, P., Gutzler, D., Hartley, D., Rosen, R., and Rasmussen, R. A., 1992, Global average concentration and trend for hydroxyl radical concentration deduced from ALE/GAGE trichloroethane (methylchloroform) data for 1978–1990,J. Geophys. Res. 97, 2445–2461.Google Scholar
  20. Rasmussen, R. A., Rasmussen, L. E., Khalil, M. A. K., and Dalluge, R. W., 1980, Concentration distribution of methyl chloride in the atmosphere,J. Geophys. Res. 85, 7350–7356.Google Scholar
  21. Rudolph, J., Johnen, F. J., and Khedim, A., 1986, Problems connected with the analysis of hydrocarbons and halocarbons in the non-urban atmosphere,Int. J. Environ. Anal. Chem. 27, 97–122.Google Scholar
  22. Rudolph, J., 1988, Two-dimensional distributions of light hydrocarbons: results from the STRATOZ III experiment,J. Geophys. Res. 93, 8367–8377.Google Scholar
  23. Warneck, P. (ed.), 1988,Chemistry of the Natural Atmosphere, Academic Press, Inc., San Diego, CA, pp. 271–272.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. Rudolph
    • 1
  • A. Khedim
    • 1
  • R. Koppmann
    • 1
  • B. Bonsang
    • 2
  1. 1.Institut für Atmospheärische ChemieForschungszentrum JülichJülichGermany
  2. 2.Laboratoire Mixte CNRS/CEACentre des Faibles RadioactivitésGif sur YvetteFrance

Personalised recommendations