Pflügers Archiv

, Volume 370, Issue 1, pp 67–70 | Cite as

Effects of pulmonary gas embolism on circulation and respiration in the dog

III. Excretion of venous gas bubbles by the lung
  • F. T. J. Verstappen
  • J. A. Bernards
  • F. Kreuzer


Intravenous injection of gas (10–60 ml) causes acute pulmonary embolism, which disappears completely within 10–20 min. Intravenous infusion of gas (1–5 ml min−1) can be continued for a long time. During these infusions a steady state is reached in which pulmonary arterial pressure is increased and cardiac output remains unaltered. This indicates that the degree of embolization has reached a constant level despite the continuous gas infusion. These findings can be explained by a gradual disappearance of the bubbles from the pulmonary circulation. The purpose of this study was to measure the possible excretion of gas from the intravascular gas bubbles into the alveolar air after venous administration. Neon was used as a test gas since its fractional concentration in ambient air is low (0.00018) and it can be detected by gas chromatography with sufficient accuracy.

It could be demonstrated that after injection neon was present in the expiration gas. During the steady state of infusion the rate of excretion in the expiration gas appeared to be equal to the rate of infusion. Changes in the pulmonary arterial pressure curve were reflected in the neon wash-out curve. It may be concluded that during pulmonary gas embolism the administered gas is excreted into the alveolar air and that the excretion rate largely depends on the increased pulmonary arterial pressure due to the obstructing bubbles themselves.

Key words

Gas embolism Pulmonary embolism Neon detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boerema, B.: Vaatveranderingen na herhaalde gasemboli. Thesis, Amsterdam 1962Google Scholar
  2. Byrne, J. J., Isales, R., Hickey, V. J.: Pulmonary vasoconstriction associated with minute pulmonary emboli. Surg. Forum4, 185–189 (1953)Google Scholar
  3. Cate, W. R., Light, R. A., Daniel, R. A., Edwards, W. M.: Role of the autonomic nervous system in the control of the pulmonary vascular bed. I. Experimental pulmonary embolism. Surg. Forum4, 190–197 (1953)Google Scholar
  4. Curtillet, E., and A.: Etude microscopique de l'embolie gazeuse. C. R. Soc. Biol.130, 647–650 (1939)Google Scholar
  5. Daley, R., Wade, J. D., Maraist, F., Bing, R. J.: Pulmonary hypertension in dogs induced by injection of lycopodium spores into the pulmonary artery, with special reference to the absence of vasomotor reflexes. Am. J. Physiol.164, 380–390 (1951)Google Scholar
  6. Deal, C. W., Fielden, B. P., Monk, I.: Hemodynamic effects of pulmonary air embolism. J. Surg. Res.11, 533–538 (1971)Google Scholar
  7. Durant, T. M., Oppenheimer, M. J., Lynch, P. R., Asciano, G., Webber, D.: Body position in relation to venous air embolism. A roentgenologic study. Am. J. Med. Sci.227, 509–518 (1954)Google Scholar
  8. Emerson, L. V., Hempleman, H. V., Lentle, R. G.: The passage of gaseous emboli through the pulmonary circulation. Respir. Physiol.3, 213–219 (1967)Google Scholar
  9. Fouché, R. F., Fergusson, D. J. G., Beck, W.: Evidence for a slow vasomotor response following unilateral miliary embolization of pulmonary arteries in dogs. S. Afric. Med. J.40, 691–696 (1966)Google Scholar
  10. Gilbert, J. W., Berglund, E., Dahlgren, S., Ovenfors, C. O., Barnes, R.: Experimental pulmonary hypertension in the dog. J. Thor. Cardiovasc. Surg.55, 565–571 (1968)Google Scholar
  11. Harvey, E. N., Barnes, D. K., Mc Elroy, W. D., Whiteley, A. H., Pease, D. C., Cooper, K. W.: Bubble formation in animals. I. Physical factors. J. Cell. Comp. Physiol.24, 1–31 (1944)Google Scholar
  12. Hayek, H. von: Kurz- und Nebenschlüsse des menschlichen Lungenkreislaufes in der Pleura. Z. Anat. Entwicklungsgeschichte112, 221–228 (1942)Google Scholar
  13. Hayek, H. von: The Human Lung. New York: Hafner 1960Google Scholar
  14. Knisely, W. H., Satterwhite, W. M., Wallace, J. M.: An attempt to demonstrate pulmonary arterio-venous anastomoses in rabbits, cats and dogs, and discussion of literature pertaining to such shunts. Circulation14, 960–961 (1956)Google Scholar
  15. Knisely, W. H.: Normal morphology and some defined pathologic conditions of fine vessels of mammalian alveoli. In: The Microcirculation, chapter 13. A symposium. Eds. W. Winters and A. Brest. Springfield, Ill.: Thomas 1969Google Scholar
  16. Lauwerijns, J.: De longvaten: hun architectoniek en hun rol bij de longontplooiing. Thesis, Brussel 1962Google Scholar
  17. Mandelbaum, I., King, H.: Pulmonary air embolism. Surg. Forum14, 236–238 (1963)Google Scholar
  18. Marchand, P., van Hasselt, H.: Massive venous air embolism. S. Afric. Med. J.38, 202–208 (1964)Google Scholar
  19. Molenaar, A.: Post-traumatische vetembolie. Thesis, Nijmegen 1967Google Scholar
  20. Niden, A. H., Aviado, D. M.: Effects of pulmonary embolism on the pulmonary circulation with special reference to arteriovenous shunts in the lung. Circ. Res.4, 67–73 (1956)Google Scholar
  21. Prinzmetal, M., Ornitz, E. M., Simkin, B., Bergman, H. C.: Arterio-venous anastomoses in liver, spleen and lungs. Am. J. Physiol.152, 48–52 (1948)Google Scholar
  22. Richardson, H. F., Coles, B. C., Hall, G. E.: Experimental gas embolism: intravenous air embolism. Can. Med. Assoc. J.36, 584–588 (1937)Google Scholar
  23. Ring, G. C., Blum, A. S., Kurbatov, T., Moss, W. G., Smith, W.: Size of microspheres passing through the pulmonary circuit in the dog. Am. J. Physiol.200, 1191–1196 (1961)Google Scholar
  24. Spencer, M. D., Oyama, Y.: Pulmonary capacity for dissipation of venous gas emboli. Aerospace Med.42, 822–827 (1971)Google Scholar
  25. Steffey, E. P., Gauger, G. E., Eger, E. I.: Cardiovascular effects of venous air embolism during air and oxygen breathing. Anesth. Analg. (Cleve.)53, 599–604 (1974)Google Scholar
  26. Szabo, G.: Die Fettembolie. Budapest: Akademiai Kiado 1971Google Scholar
  27. Tobin, C. E.: Arterio-venous shunts in the peripheral pulmonary circulation in the human lung. Thorax21, 197–204 (1966)Google Scholar
  28. Verstappen, F. T. J., Bernards, J. A., Kreuzer, F.: Effects of pulmonary gas embolism on circulation and respiration in the dog. I. Effects on circulation. Pflügers Arch368, 89–96 (1977a)Google Scholar
  29. Verstappen, F. T. J., Bernards, J. A., Kreuzer, F.: Effects of pulmonary gas embolism on circulation and respiration in the dog. II. Effects on respiration. Pflügers Arch.368, 97–104 (1977b)Google Scholar
  30. Weibel, E.: Die Blutgefäßanastomosen in der menschlichen Lunge. Z. Zellforsch. Mikroskop. Anat. Abt. Histochem.50, 653–692 (1959)Google Scholar
  31. Wolffe, J. B., Robertson, H. F.: Experimental air embolism. Ann. Intern. Med.9, 162–165 (1935)Google Scholar
  32. Wright, R. R.: Experimental pulmonary hypertension produced by recurrent air embolism. Med. Thorac.19, 423–427 (1962)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. T. J. Verstappen
    • 1
    • 2
  • J. A. Bernards
    • 1
  • F. Kreuzer
    • 1
  1. 1.Department of Physiology, Medical FacultyUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of Physiology, Biomedical CenterMedical Faculty MaastrichtMaastrichtThe Netherlands

Personalised recommendations