Advertisement

Spectrophotometric study of the complexation of iodine with 1,7-diaza-15-crown-5 in chloroform solution

  • Abolfazl Semnani
  • Mojtaba Shamsipur
Article

Abstract

The complex formation reaction between iodine and 1,7-diaza-15-crown-5 (DA15C5) has been studied spectrophotometrically in chloroform at 25°C. The resulting 1:2 (DA15C5:I2) molecular complex was formulated as (DA15C5...;I+)I 3 . The spectrophotometric results, as well as the conductivity measurements, revealed that the gradual release of triiodide ion from its contact ion paired form in the molecular complex into the solution is the rate determining step of the reaction. The rate constant was calculated ask=(8.8±0.2)×10−3 min−1. The formation constant of the molecular complex was evaluated from the computer fitting of the absorbance-mole ratio data as logKf=6.89±0.09.

Key words

DA15C5-iodine complex stoichiometry stability rate constant spectrophotometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Brandon, M. Tamres, and S. Searles:J. Am. Chem. Soc. 82, 2129 (1960).Google Scholar
  2. 2.
    E. M. Arnett and C. Y. Wu:J. Am. Chem. Soc. 84, 1684 (1962).Google Scholar
  3. 3.
    L. J. Andrews and R. M. Keefer:Molecular Complexes in Organic Chemistry, Holden-Day (1964).Google Scholar
  4. 4.
    M. Tamres and J. Yarwood:Spectroscopy and Structure of Molecular Complexes, Ch. 3., Plenum Press (1974).Google Scholar
  5. 5.
    P. J. Trotter and P. A. White:Appl Spectrosc. 32, 232 (1978).Google Scholar
  6. 6.
    I. Ikemoto, M. Sakairi, T. Tsutsumi, H. Kuroda, I. Tasumi, and H. Shirakawa:Chem. Lett. 1189 (1979).Google Scholar
  7. 7.
    N. Kulevsky and K. N. Butamina:Spectrochim. Acta 46A, 79 (1991).Google Scholar
  8. 8.
    R. M. Izatt, J. S. Bradshaw, K. Pawlak, R. L. Bruening, and B. J. Tarbet:Chem. Rev. 92, 1261 (1992).Google Scholar
  9. 9.
    H. P. Hopkins, D. V. Jahagirdar, and F. J. Windler:J. Phys. Chem. 82 1254 (1978).Google Scholar
  10. 10.
    L. J. Andrews and R. M. Keefer:J. Org. Chem. 52, 2690 (1987).Google Scholar
  11. 11.
    E. M. Nour and L. A. Shahada:Spectrochim. Acta 44A, 1277 (1988).Google Scholar
  12. 12.
    E. M. Nour:Spectrochim. Acta 47A, 743 (1991).Google Scholar
  13. 13.
    W. Hirsch, J. Greenman, and R. Pizer:Can. J. Chem. 71, 2171 (1993).Google Scholar
  14. 14.
    A. Semnani and M. Shamsipur:Spectrochim. Acta 49A, 411 (1993).Google Scholar
  15. 15.
    R. P. Lang:J. Phys. Chem. 78, 1657 (1974).Google Scholar
  16. 16.
    L. Andrews, E. S. Prochaska and A. LoewenschussInorg. Chem. 19, 463 (1980).Google Scholar
  17. 17.
    M. Mizuno, J. Tanaka, and I. Harada:J. Phys. Chem. 85, 1789 (1981).Google Scholar
  18. 18.
    Y. A. Serguchev and T. I. Petrenko:Teor. Eksp. Khim. 13, 705 (1977).Google Scholar
  19. 19.
    V. A. Nicely and J. L. Dye:J. Chem. Educ. 48, 443 (1971).Google Scholar
  20. 20.
    W. E. Wentworth:J. Chem. Educ. 42, 96, 162 (1962).Google Scholar
  21. 21.
    M. J. D. Powell:Comput. J. 7, 155 (1964).Google Scholar
  22. 22.
    P. Labbe, R. Le Goaller, H. Handel, G. Pierre, and J. L. Pierre:Electrochim. Acta 27, 257 (1982).Google Scholar
  23. 23.
    R. G. Pearson:Struct. Bonding 80, 1 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Abolfazl Semnani
    • 1
  • Mojtaba Shamsipur
    • 2
  1. 1.Department of ChemistryShiraz UnivesityShirazIran
  2. 2.Department of ChemistryRazt UniversityKermanshahIran

Personalised recommendations