Advertisement

Journal of Applied Electrochemistry

, Volume 23, Issue 5, pp 487–494 | Cite as

A mixture design approach to the service life and the oxygen evolving catalytic activity of Ru-Sn-Ti ternary oxide coated electrodes

  • Shih-Min Lin
  • Ten-Chin Wen
Article
  • 67 Downloads

Abstrat

Ternary (Ru-Sn-Ti) oxide coatings on Ti substrates have been studied experimentally over their entire compositional range using the mixture design method. The results, involving the effects of calcination temperature and coating solution composition on service life and electrode oxygen evolving catalytic activity, are examined through regression models and response surface contour plots. The statistical equations effectively model the experimental results.

Keywords

Catalytic Activity Calcination Response Surface Service Life Calcination Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Beer,U.S. Patent 3632498 (1972).Google Scholar
  2. [2]
    H. Beer,U.S. Patent 3711385 (1973).Google Scholar
  3. [3]
    S. Trasatti and G. Lodi, ‘Electrodes of Conductive Metallic Oxides’, Part B, (edited by S. Trasatti), Elsevier, Amsterdam (1981) p. 521.Google Scholar
  4. [4]
    F. Hine, M. Yasuda and T. Yoshida,J. Electrochem. Soc. 124 (1977) 500.Google Scholar
  5. [5]
    R. Kötz, S. Stucki, D. Scherson and D. M. Kolb,J. Electroanal. Chem. 172 (1984) 211.Google Scholar
  6. [6]
    T. Loucka,J. Appl. Electrochem. 7 (1977) 211.Google Scholar
  7. [7]
    T. Loucka,ibid. 11 (1981) 143.Google Scholar
  8. [8]
    A. Nidola, ‘Electrodes of Conductive Metallic Oxides’, Part B, (edited by S. Trasatti), Elsevier, Amsterdam (1981) p.627.Google Scholar
  9. [9]
    C. Iwakura and K. Sakamoto,J. Electrochem. Soc. 132 (1985) 2420.Google Scholar
  10. [10]
    M. E. G. Lyons and L. D. Burke,J. Chem. Soc. Faraday Trans. 183 (1987) 299.Google Scholar
  11. [11]
    K. J. O'Leary,U.S. Patent 3776834 (1973).Google Scholar
  12. [12]
    L. D. Burke and M. McCarthy,Electrochim. Acta 29 (1984) 211.Google Scholar
  13. [13]
    R. Kotz and S. Stucki,ibid. 31 (1986) 1311.Google Scholar
  14. [14]
    R. Hutchings, K. Mulle, R. Kötz and S. Stucki,J. Mater. Sci. 19 (1984) 3987.Google Scholar
  15. [15]
    G. Angelimetta, S. Trasatti, L. J. D. Atanasoska, Z. S. Minevski and R. T. Atanasoski,Mater. Chem. Phys. 22 (1989) 231.Google Scholar
  16. [16]
    A. De. Battisti, R. Brina, G. Gavelli, A. Benedetti and G. Fagherazzi,J. Electroanal. Chem. 200 (1985) 93.Google Scholar
  17. [17]
    C. Comninellis and G. P. Vercesi,J. Appl. Electrochem. 21 (1991) 335.Google Scholar
  18. [18]
    S. Saito, K. Aue and N. Shimojo,U.S. Patent 4061558 (1977).Google Scholar
  19. [19]
    M. Spasojevic, N. Krstajic and M. Jaksic,J. Res. Inst. Catalysis, Hokkaido Univ. 32 (1984) 29.Google Scholar
  20. [20]
    B. V. Tilak, K. Tari and C. L. Hoover,J. Electrochem. Soc. 135 (1988) 1386.Google Scholar
  21. [21]
    A. Bandi, I. Vartires, A. Mihelis and C. Hainarosie,J. Electroanal. Chem. 157 (1983) 241.Google Scholar
  22. [22]
    A. Bandi, A. Mihelis, I. Vartires, E. Ciortan and I. Rosu,J. Electrochem. Soc. 134 (1987) 1982.Google Scholar
  23. [23]
    N. Wagner and L. Kuhnemund,Cryst. Res. Technol. 23 (1988) 1017.Google Scholar
  24. [24]
    S. Pushpavanam, K. C. Narasimham and K. I. Vasu,Bull. Electrochem. 4 (1988) 979.Google Scholar
  25. [25]
    J. F. C. Boodts and S. Trasatti,J. Electrochem. Soc. 137 (1990) 3784.Google Scholar
  26. [26]
    A. I. Onuchukwu and S. Trasatti,J. Appl. Electrochem. 21 (1991) 858.Google Scholar
  27. [27]
    J. A. Cornell, ‘Experiments with Mixtures: Design, Models and the Analysis of Mixture Data’, 2nd ed. John Wiley and Sons, New York (1990).Google Scholar
  28. [28]
    Y. Matsumota, S. Yamada, T. Nishida and E. Sato,J. Electrochem. Soc. 127 (1980) 2360.Google Scholar
  29. [29]
    K. K. Hesler and J. R. Lofstrom,J. Coating Technol. 53 (1981) 33.Google Scholar
  30. [30]
    N. Standish and A. B. Yu,Powder Techol. 53 (1987) 69.Google Scholar
  31. [31]
    Idem, ibid. 49 (1987) 249.Google Scholar
  32. [32]
    Y. M. Balychev, F. K. Tkachenko and M. N. Shanin,Russian Metallurgy 4 (1988) 159.Google Scholar
  33. [33]
    R. D. Snee,CHEMTECH 9 (1979) 702.Google Scholar
  34. [34]
    Z. M. Jarzebski and J. P. Marton,J. Electrochem. Soc. 123 (1976) 229C.Google Scholar
  35. [35]
    G. Lodi, E. Sivieri, A. De. Battisti and S. Trasatti,J. Appl. Electrochem. 8 (1978) 135.Google Scholar
  36. [36]
    N. R. Draper and H. Smith, ‘Applied Regression Analysis’, 2nd edn., John Wiley and Sons, New York (1981) pp.294–379.Google Scholar
  37. [37]
    S. Trasatti,Mater. Chem. Phys. 16 (1987) 157.Google Scholar
  38. [38]
    C. Iwakura, M. Inai, M. Manabe and H. Tamura,Denki Kagaku 48 (1980) 91.Google Scholar
  39. [39]
    C. Comninellis and G. P. Vercesi,J. Appl. Electrochem. 21 (1991) 136.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Shih-Min Lin
    • 1
  • Ten-Chin Wen
    • 1
  1. 1.Department of Chemical EngineeringNational Cheng Kung UniversityTainan, TaiwanRepublic of China

Personalised recommendations