Skip to main content
Log in

Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon's horn

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Combined Golgi/pigment studies revealed that pyramidal neurons and non-pyramidal cells of the Ammon's horn of the human adult can be distinguished from each other by their characteristic lipofuscin pigment deposits. In sector CA1, both the typical pyramidal neurons and the modified forms of pyramidal cells contain a modest amount of fine lipofuscin granules while non-pyramidal cells are either pigment-laden or devoid of lipofuscin deposits. Strips running through the whole depth of the pyramidal cell layer and the stratum oriens of CA1 were examined and all nucleolated nerve cells present within these strips were classified and counted (16 brains, age range from 28 to 69 years). Of the 18,510 neurons classified, 16,765 were pyramidal cells, including their modified versions, and 1,745 were non-pyramidal cells. The pyramidal cells, accordingly, were intermixed with 9.4±1.0% non-pyramidal neurons. The data presented provide a basis for investigation of the aging and diseased human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P (1975) Organization of hippocampal neurons and their interconnections. In: Isaacson RL, Primbram KH (eds) The hippocampus. Vol. 1. Structure and development. Plenum press, New York, pp 155–175

    Google Scholar 

  • Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia — a quantitative study. Acta Neuropathol 37:111–118

    Google Scholar 

  • Blackstad TW (1956) Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417–538

    Google Scholar 

  • Backstad TW (1967) Cortical grey matter. A correlation of light and electron microscopic data. In: Hyden H (ed) The neuron. Elsevier, Amsterdam, pp 49–118

    Google Scholar 

  • Braak H (1974) On the structure of the human archicortex. I. The cornu ammonis. A Golgi and pigmentarchitectonic study. Cell Tissue Res 152:349–383

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi E, Florey E, Grüsser OJ, van der Loos H (eds) Studies of brain function, Vol 4. Springer, Berlin Heidelberg New York, pp 1–147

    Google Scholar 

  • Braak H (1983) Transparent Golgi impregnations: a way to examine both details of cellular processes and components of the cell body. Stain Technol 58:91–95

    Google Scholar 

  • Braak H (1984) Architectonics as seen by lipofuscin stains. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum press, New York, pp 59–104

    Google Scholar 

  • Braitenberg V, Schüz A (1983) Some anatomical comments on the hippocampus. In: Seifert W (ed) Neurobiology of the hippocampus. Academic press, New York, pp 21–37

    Google Scholar 

  • Buzsáki G, Eidelberg E (1982) Direct afferent excitation and long term potentiation of hippocampal interneurons. J Neurophysiol 48:597–607

    Google Scholar 

  • Cassell MD, Brown MW (1977) Cell counts for the stratum pyramidale of the hippocampus of the rat. Life Sci 21:1187–1191

    Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum press, New York, pp 123–200

    Google Scholar 

  • Frotscher M, Léránth C, Lübbers K, Oertel WH (1984) Commissural afferents innervate glutamate decarboxylase immuno-reactive non-pyramidal neurons in the guinea pig hippocampus. Neurosci Lett 46:137–143

    Google Scholar 

  • Knowles WD, Schwartzkroin PA (1981) Local circuit synaptic interactions in hippocampal brain slices. J Neurosci 1:318–322

    Google Scholar 

  • Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, New York, pp 315–340

    Google Scholar 

  • Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Miller AKH, Alston RL, Mountjoy CQ, Corsellis JAN (1984) Automated differential cell counting on a sector of the normal human hippocampus: The influence of age. Neuropath Appl Neurobiol 10:123–141

    Google Scholar 

  • Mouritzen Dam A (1979) The density of neurons in the human hippocampus. Neuropathol Appl Neurobiol 5:249–264

    Google Scholar 

  • Niklowitz W, Bak IJ (1965) Elektronenmikroskopische Untersuchungen am Ammonshorn. I. Die normale Substruktur der Pyramidenzellen. Z Zellforsch 66:529–547

    Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés. Tome II. Maloine, Paris

    Google Scholar 

  • Ribak CE, Vaughn JS, Saito K (1978) Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res 140:315–332

    Google Scholar 

  • Rose JE (1940) Zur normalen und pathologischen Architektonik der Ammonsformation. J Psychol Neurol 49:137–188

    Google Scholar 

  • Sachs L (1979) Angewandte Statistik. Springer, Berlin

    Google Scholar 

  • Schmechel DE, Vickrey BG, Fitzpatrick D, Elde RP (1984) GABAergic neurons of mammalian cerebral cortex: widespread subclass defined by somatostatin content. Neurosci Lett 47:227–232

    Google Scholar 

  • Schwartzkroin PA, Kunkel DD (1985) Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus. J Comp Neurol 232:205–218

    Google Scholar 

  • Schwartzkroin PA, Mathers LH (1978) Physiological and morphological identification of a non-pyramidal hippocampal cell type. Brain Res 157:1–10

    Google Scholar 

  • Smolen AJ, Wright LL, Cunningham TJ (1983) Neuron numbers in the superior cervical sympathetic ganglion of the rat: A critical comparison of methods for cell counting. J Neurocytol 12:739–750

    Google Scholar 

  • Somogyi P, Nunzi MG, Gorio A, Smith AD (1983) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142

    Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD, Nunzi MG, Gorio A, Wu JY (1984) Different populations of GABA-ergic neurons in the visual cortex and hippocampus of cat contain somatostatin or cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    Google Scholar 

  • Tömböl T, Somogyi G, Hajdu F (1978) Golgi study on cat hippocampal formation. Anat Embryol 15:331–350

    Google Scholar 

  • Vogt C, Vogt O (1937) Sitz und Wesen der Krankheiten im Lichte der topistischen Hirnforschung und des Variierens der Tiere. J Psychol Neurol 47:237–457

    Google Scholar 

  • Wall G (1972) Über die Anfärbung der Neurolipofuszine mit Aldehydfuchsinen. Histochemie 29:155–171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olbrich, HG., Braak, H. Ratio of pyramidal cells versus non-pyramidal cells in sector CA1 of the human Ammon's horn. Anat Embryol 173, 105–110 (1985). https://doi.org/10.1007/BF00707308

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00707308

Key words

Navigation