Skip to main content
Log in

A nonhydrostatic model for simulation of airflow over mesoscale bell-shaped ridges

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This paper describes a nonhydrostatic and incompressible mesoscale model formulation using a terrain-following coordinate system. A tensor transformation procedure is used to derive a diagnostic equation for the nonhydrostatic pressure field. The model features a simplified second-order turbulence closure scheme. The two-dimensional version of the nonhydrostatic model, as well as the corresponding hydrostatic model, are applied to simulate stably stratified airflow over mesoscale bell-shaped mountain ridges. The results show that the nonhydrostatic model is capable of simulating nonhydrostatic dynamics of mesoscale lee wave systems such as the trapped wave phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrén, A.: 1990, ‘Evaluation of a Turbulence Closure Scheme Suitable for Air-Pollution Applications’,J. Appl. Meteorol. 29, 224–39.

    Google Scholar 

  • Clark, T.: 1977, ‘A Small-Scale Dynamic Model Using a Terrain-Following Coordinate Transformation’,J. Computational Phys. 24, 186–215.

    Google Scholar 

  • Durran, D.: 1982, ‘The Effects of Moisture on Trapped Mountain Lee Waves’,J. Atmos. Sci. 39, 2490–506.

    Google Scholar 

  • Durran, D.: 1991, ‘Mountain Waves and Downslope Winds’, in W. Blumen (ed.),Atmospheric Processes Over Complex Terrain, American Meteorological Society, pp. 59–81.

  • Dutton, J. A.: 1976,The Ceaseless Wind, an Introduction to the Theory of Atmospheric Motion, McGraw-Hill, 579pp.

  • Enger, L.: 1984, ‘A Three-Dimensional Time Dependent Model for the Meso-γ-Scale-Some Test Results with a Preliminary Version’, Report No. 80. Department of Meteorology, Uppsala University, Uppsala, Sweden.

    Google Scholar 

  • Enger, L.: 1986, ‘A Higher Order Closure Model Applied to Dispersion in a Convective PBL’,Atmos. Environ. 20, 879–94.

    Google Scholar 

  • Pielke, R. A.: 1972, ‘Comparison of a Hydrostatic and an Anelastic Dry Shallow Primitive Equation Model’, NOAA Tech. Memo., ERL OD-13, 47 pp.

  • Pielke, R. A. and Martin, C. L.: 1981, ‘The Derivation of a Terrain Following Coordinate System for use in a Hydrostatic Model’,J. Atmos. Sci. 38, 1707–713.

    Google Scholar 

  • Pielke, R. A.: 1984,Mesoscale Meteorological Modelling, Academic Press, New York, p. 612.

    Google Scholar 

  • Queney, P.: 1948, ‘The Problem of Air Flow Over Mountains: a Summary of Theoretical Studies’,Bull. Amer. Meteorol. Soc. 29, 16–26.

    Google Scholar 

  • Scorer, R.: 1948, ‘Theory of Waves in the Lee of Mountains’,Quart. J. R. Meteorol. Soc. 75, 41–56.

    Google Scholar 

  • Smith, R. B.: 1980, ‘Linear Theory of Stratified Hydrostatic Flow Past an Isolated Mountain’,Tellus 32, 348–64.

    Google Scholar 

  • Song, J. L., Pielke, R. A., Segal, M., Arrit, R. W. and Kessler, R. C.: 1985, ‘A Method to Determine Nonhydrostatic Effects within Subdomains in a Mesoscale Model’,J. Atmos. Sci. 42, 2110–120.

    Google Scholar 

  • Tjernström, M.: 1987, ‘A Study of Flow Over Complex Terrain Using a Three Dimensional Model. A Preliminary Model Evaluation Focusing on Stratus and Fog’,Annales Geophysicae. 5B, 469–86.

    Google Scholar 

  • Tjernström, M., Enger, L. and Andrén, A.: 1988, ‘A Three-Dimensional Numerical Model for Studies of Atmospheric Flows on the Meso-γ Scale’,J. Theoret. and Appl. Mechanics,7, Special Issue, Supplement No. 2, pp. 167–94.

    Google Scholar 

  • White, P.: 1978, ‘Mesoscale Modelling’.Seminars 1978: The Interpretation and Use of Large Scale Numerical Forecast Products, ECMWF, U.K., pp. 17–55.

  • Wessling, P.: 1982, ‘Theoretical Aspects of a Multigrid Method’,SIAM J. Sci. Stat. Comp. 3, 387–407.

    Google Scholar 

  • Yang, X.: 1991, ‘A Study of Nonhydrostatic Effects in Idealized Sea Breeze Systems’,Boundary-Layer Meteorol. 54, 183–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X. A nonhydrostatic model for simulation of airflow over mesoscale bell-shaped ridges. Boundary-Layer Meteorol 65, 401–424 (1993). https://doi.org/10.1007/BF00707035

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00707035

Keywords

Navigation