Advertisement

Journal of comparative physiology

, Volume 98, Issue 2, pp 169–181 | Cite as

The relationship between water content, activity, and free amino acids inHelix pomatia L.

  • W. Wieser
  • M. Schuster
Article

Summary

  1. 1.

    Between a total osmolarity of the blood from 120 to 260 mosmol/l the water content of the foot ofHelix pomatia varied from 80.7 to 72.8%. This is a much smaller range than would occur if the tissue behaved as a perfect osmometer, about 2.3 ml of water being saved per 10 g wet tissue weight.

     
  2. 2.

    No actively crawling animal had a blood osmolarity higher than 190 mosmol/l, no inactive animal had one lower than 175 mosmol/l.

     
  3. 3.

    The concentration of ninhydrin positive substances (NPS=free amino acids plus urea and ammonia) in the foot tissue ranges from 12.4 to 57.2 mM/kg tissue water. In the blood the corresponding figures are 0.37 and 1.95 mM/kg. The mean values in active and non-active animals respectively are 32.6 and 44.3 mM/kg H2O in the foot, 0.81 and 1.08 mM/kg H2O in the blood.

     
  4. 4.

    On the basis of their relationship to osmolarity four groups of NPS can be distinguished in the foot tissue:

     
  1. a)

    Highly significant positive correlation with osmolarity; large concentration difference between active and nonactive snails:tau, ser, gly (6.7–17.7% of all NPS).

     
  2. b)

    Significant to highly significant positive correlation; small concentration difference between active and non-active snails:asp, thr, glu, ala, val, leu, tyr, phe (44–51.7% of all NPS).

     
  3. c)

    No correlation, no concentration difference:glun, urea, lys, ammonia (20.4–28.7% of all NPS).

     
  4. d)

    Highly significant negative correlation:orn (6.8–15.8% of all NPS).

     
  1. 5.

    The increase in osmolarity due to the NPS of groups a and b is just about compensated for by NPS of groups c and d, the concentrations of which either remain stationary or even decrease over a twofold increase in total osmolarity of the tissue water. Thus the contribution of NPS to intracellular isosmotic regulation is negligible.

     
  2. 6.

    In the blood the general pattern of distribution of NPS is similar to that in the tissue water, the major differences involving glutamate, glutamine, and the components of the arginine cycle.

     
  3. 7.

    Changes in intracellular water content lead to a reorganisation of metabolism, with the effect that at higher degrees of dilution the production of members of the arginine cycle is favoured at the expense mainly of gly, ser, asp, glu, glu, and ala. This probably reflects acceleration of the cycle in order to increase the output of arginine.

     

Keywords

Glutamate Significant Positive Correlation Free Amino Acid Ninhydrin Concentration Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedford, J. J.: Osmoregulation inMelanopsis trifasciata Gray 1843. III. The intracellular nitrogenous compounds. Comp. Biochem. Physiol.40 A, 899–910 (1971a)Google Scholar
  2. Bedford, J. J.: Osmoregulation inMelanopsis trifasciata. IV. The possible control of intracellular isosmotic regulation. Comp. Biochem. Physiol.40 A, 1015–1027 (1971b)Google Scholar
  3. Burton, R. F.: Variations in the volume and concentration of the blood of the snail,Helix pomatia L., in relation to the water content of the body. Canad. J. Zool.42, 1085–1097 (1964)Google Scholar
  4. Campbell, J. W.: Arginine and urea biosynthesis in the land planarian: its significance in biochemical evolution. Nature (Lond.)208, 1299–1301 (1965)Google Scholar
  5. Campbell, J. W., Bishop, S. H.: Nitrogen metabolism in molluscs. In: Comparative biochemistry of nitrogen metabolism (J. W. Campbell, ed.), vol. I, p. 103–206. London and New York: Academic Press 1970Google Scholar
  6. Campbell, J. W., Speeg, K. V., jr.: Arginine biosynthesis and metabolism in terrestrial snails. Comp. Biochem. Physiol.25, 3–32 (1968)Google Scholar
  7. Cardot, J., Ripplinger, J.: Recherches sur la composition en aminoacides libres du système nerveux d'Helix pomatia. C. R. Soc. Biol. Lyon155, 1961–1963 (1961)Google Scholar
  8. Duval, M.: Concentration moleculaire de sang de l'escargot, ses facteurs, ses variations influence de l'état d'activité de l'animal. Ann. Physiol. Physicochim. Biol.6, 346–364 (1930)Google Scholar
  9. Florkin, M.: Nitrogen metabolism. In: Physiology of mollusca (K. M. Wilbur, C. M. Yonge, eds.), vol. II, p. 309–351. New York and London: Academic Press 1966Google Scholar
  10. Florkin, M., Schoffeniels, E.: Molecular approaches to ecology. New York and London: Academic Press 1969Google Scholar
  11. Hartenstein, R.: Nitrogen metabolism in non-insect arthropods. In: Comparative biochemistry on nitrogen metabolism (J. W. Campbell, ed.), vol. I, p. 299–385. New York and London: Academic Press 1970Google Scholar
  12. Howes, N. H., Wells, G. P.: The water relations of snails and slugs. I. Weight rhythms inHelix pomatia L. J. exp. Biol.11, 327–343 (1934)Google Scholar
  13. Jullien, A., Acolat, L., Ripplinger, J., Joly, M., Vieille-Cessay, C.: La teneur en ions Na, K et Ca de l'hémolymphe déterminée à flamme et ses rapports avec la composition de solutions artificielles aptes à assurer une activité de longue durée au coeur isol'e chez les Hélicides. C. R. Soc. Biol. (Paris)149, 723–725 (1955)Google Scholar
  14. Kedenburg, C.-P.: A lithium buffer system for accelerated single-column amino acid analysis in physiological fluids. Analyt. Biochem.40, 35–42 (1971)Google Scholar
  15. Kerkut, G. A., Cottrell, G. A.: Amino acids in the blood and nervous system ofHelix aspersa. Comp. Biochem. Physiol.5, 227–230 (1962)Google Scholar
  16. Lockwood, A. P. M.: The extra-hemolymph sodium ofAsellus aquaticus. J. exp. Biol.36, 562–565 (1959)Google Scholar
  17. Matsumoto, M., Morimasa, T., Takeuchi, H., Mori, A., Kohsaka, M., Kobayashi, J., Mori, F.: Amounts of inorganic ions and free amino acids in hemolymph and ganglion of the African giant snail,Achatina fulica Ferrusac. Comp. Biochem. Physiol.48 A, 465–470 (1974)Google Scholar
  18. Meyerhof, O., Lohmann, K.: Über die natürlichen Guanidinophosphorsäuren (Phosphagene) in der quergestreiften Muskulatur. II. Mitteilung: Die physikalisch-chemischen Eigenschaften der Guanidinophosphorsäuren. Biochem. Z.196, 49–72 (1928)Google Scholar
  19. Nopp, H.: Physiologische Aspekte des Trockenschlafs der Landschnecken. S.-B. Österr. Akad. Wiss. Math.-naturwiss. Kl. Abt. I,182, 1–75 (1974)Google Scholar
  20. Robertson, J. D.: Studies on the chemical composition of muscle tissue. III. The mantle muscle of cephalopod molluscs. J. exp. Biol.42, 153–175 (1965)Google Scholar
  21. Siebers, D., Lucu, C., Sperling, K.-R., Eberlein, K.: Kinetics of osmoregulation in the crabCarcinus maenas. Mar. Biol.17, 291–303 (1973)Google Scholar
  22. Speeg, K. V., Campbell, J. W.: Formation and volatilization of ammonia gas by terrestrial snails. Amer. J. Physiol.214, 1392–1402 (1968)Google Scholar
  23. Stöver, H.: Über den Wasser- und Elektrolythaushalt vonArianta arbustorum (L.). J. comp. Physiol.83, 51–61 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • W. Wieser
    • 1
  • M. Schuster
    • 1
  1. 1.Institut für Zoophysiologie der UniversitätInnsbruckAustria

Personalised recommendations