Skip to main content
Log in

A three-dimensional model for calculating the concentration distribution in inhomogeneous turbulence

  • Part II: Analysis of Concentration Fluctuations
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new approach for calculating the concentration distribution in inhomogeneous turbulence is suggested. The model is a 3-D model, constrained to describe incompressible flow. The model requires a knowledge of the covariance matrix of the Eulerian velocities and the two-point third moments. The model is applied for three types of turbulent field: homogeneous isotropic turbulence, constant flux neutral boundary layer and free convective turbulence. The required Eulerian moments are calculated using the ‘eddy model’ of the turbulent field. Concentration moments are calculated and results are compared to experimental data. Other model predictions which have no experimental support can be compared to measurements when available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G.K. (1952).Diffusion in a field of homogeneous turbulence II:The relative motion of particles. Proc. Camb. Phil. Soc.48, 345–362.

    Google Scholar 

  • Batchelor, G.K. (1956).The theory of homogeneous turbulence. Cambridge University Press.

  • Batchelor, G. K. (1964).Diffusion from sources in a turbulent boundary layer. Archiv. Mechaniki Stoswanej.,3, 661.

    Google Scholar 

  • Bernstein J. H., Berkowicz R. (1984),Monte-Carlo simulation of plume dispersion in the convective boundary layer., Atmos. Environ.,18, 701–712.

    Google Scholar 

  • Corrsin, S. (1952).Heat transfer in isotropic turbulence. J. Appl. Phys. 23,1, 113–117.

    Google Scholar 

  • Deardorff J. W. Willis G. E. (1985),Further results from a laboratory model of the convective planetary boundary layer, Bound. Lay. Met.,32, 205–236.

    Google Scholar 

  • Deardorff J. W. Willis G. E. (1988),Concentration fluctuations within laboratory convectively mixed layer, in “Lectures on Air Pollution Modeling” ed. by A. Venkatram and J. C. Wyngaard AMS Boston, 366–370.

    Google Scholar 

  • De Baas A. F., Van-Dop H., Nieuwstadt F. T. M. (1986),An application of the Langevin equation for inhomogeneous conditions to dispersion in the convective boundary layer. Atmos. Environ.,18, 701–712.

    Google Scholar 

  • Dinar N., Kaplan H. and Kleiman M. (1988),Characterization of concentration fluctuations of a surface plume in a neutral boundary layer Bound. Lay. Met.45, 157–175.

    Google Scholar 

  • Durbin, P.A. (1980).A Stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech.100, 279–302.

    Google Scholar 

  • Egbert, G.D. and Baker, M.B. (1984).Comments on the effect of Gaussian particle-pair distribution functions in the statistical theory of concentration fluctuations in homogeneous turbulence. B.L. Sawford 1983, 339–353. Q.J.R. Met. Soc.110, 1195–1199.

    Google Scholar 

  • Fackrell, J.E. and Robins, A.G. (1982).Concentration fluctuations and fluxes in plumes from point source in a turbulent boundary layer. J. Fluid Mech.117, 1–26.

    Google Scholar 

  • Grant, H.L. (1958).The large eddies of turbulent motion. J. Fluid Mech.4, 149–190.

    Google Scholar 

  • Gifford, F.A. (1982).Horizontal diffusion in the atmosphere: A Lagrangian dynamical theory. Atmos. Environ.,16, 505–512.

    Google Scholar 

  • Hanna, S.R. (1981).Turbulent energy and Lagrangian time scale in the planetary boundary layer. A.M.S. 5th Symp. on turbulence diffusion and air pollution, Atlanta,Ga, 61–62

  • Hanna, S. R. (1984).The exponential probability density function and concentration fluctuations in smoke plumes Bound. Lay. Met.29, 361–375

    Google Scholar 

  • Horst, T. W., (1979).Lagrangian similarity modelling of vertical diffusion from a ground level source. J. App. Met.,18, 733–740.

    Google Scholar 

  • Hunt J. C. R., Kaimal J. C., Gaynor J. E. (1988)Eddy structure in the convective boundary layernew measurements and new concepts., Q. J. R. Met. Soc.,114, 827–858.

    Google Scholar 

  • Kaimal, J.S., Wyngaard, J.C., Hangen, D.A., Cotè, O.R., Izumi, Y., Caughey, J.J. Reading, C.J. (1976).Turbulent structure in the convective boundary layer. J. Atm. Sci.33, 2152–2169.

    Google Scholar 

  • Kaplan, H. and Dinar, N. (1988a).A stochastic model for dispersion and concentration distribution in homogeneous turbulence. J. Fluid. Mech.190, 121–140

    Google Scholar 

  • Kaplan, H. and Dinar, N., (1988b).A three dimensional stochastic model for concentration fluctuation statistics in isotropic homogeneous turbulence. Journal of Computational Physics,79, No.2, 317–335.

    Google Scholar 

  • Kaplan, H. and Dinar, N. (1988c).Comments on the paper: On the relative dispersion of two particles in homogeneous stationary turbulence and the implication for the size of concentration fluctuations at large time. By D.J. Thompson (1986), Q.J.R. Met. Soc. 12, 890–894. Q.J.R. Met. Soc.114, 545–550.

    Google Scholar 

  • Kaplan, H. and Dinar, N. (1989a).The interference of two passive scalars in a homogeneous isotropic turbulent field. J. Fluid. Mech.203, 273–287.

    Google Scholar 

  • Kaplan H., Dinar N. (1989b).Diffusion of an instantaneous cluster of particles in homogeneous turbulence. Atmos. Envi.,23, 1459–1463.

    Google Scholar 

  • Lee, J. T. and Stone, G. L. (1983).The use of Eulerian initial conditions in a Lagrangian model of turbulent diffusion. Atmos. Environ.,17, 2477–2481.

    Google Scholar 

  • Lenschow, D. H., Wyngaard, J. C., Pennel, W. T. (1980)Mean field and second moment budgets in a baroclinic, convective boundary layer., J. Atmos. Sci.,37, 1313–1326.

    Google Scholar 

  • Luhar A. K. and Britter R. E. (1989),A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer., Atmos. Environ.,23, No. 9, 1911–1924.

    Google Scholar 

  • Misra P. K. (1982).Dispersion of non-buoyant particles inside a convective boundary layer. J. Atmos. Sci.,41, 3162–3169.

    Google Scholar 

  • Novikov, E. A. (1963).Random force method in turbulence theory. Soviet Physics JEPT,17, 1449–1454.

    Google Scholar 

  • Pasquill, F. and Smith, F. B. (1983).Atmospheric Diffusion, third edition, Ellis Horwood Chichester.

    Google Scholar 

  • Pope, S.B. (1985).P df methods for turbulent reactive flows. Prog. Energy Combust. Sci.11, 119–192.

    Google Scholar 

  • Sawford, B.L. (1982).Lagrangian Monte-Carlo simulation of a turbulent motion of a pair of particles. Q.J.R. Met. Soc.108, 207–213.

    Google Scholar 

  • Sawford, B. L., Frost C. C. and Allen T. C. (1985)Atmospheric boundary layer measurements of concentration statistics from isolated and multiple sources Bound. Lay. Met.31, 249–268.

    Google Scholar 

  • Sawford B. L., Guest F. M., (1987),Lagrangian stochastic analysis of flux gradient relationship in the convective boundary layer. J. Atmos. Sci.,44, No. 8, 1952–1165.

    Google Scholar 

  • Sutton, O. G. (1953).Micrometeorology, McGraw-Hill, New-York.

    Google Scholar 

  • Sykes, R.I., Lewellen, W.S. and Parker, S.F. (1984).A turbulent transport model for concentration fluctuations and fluxes. J. Fluid. Mech.139, 193–218.

    Google Scholar 

  • Thomson, D.J. (1986).On the relative dispersion of two particles in homogeneous stationary turbulence and the implication for the size of concentration fluctuations a large times. Q.J.R. Met. Soc.12, 890–894.

    Google Scholar 

  • Thomson, D.J. (1987).Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech.180, 529–556.

    Google Scholar 

  • Thomson, D.J. (1990).A stochastic model for the motion of particle pairs in isotropic high Reynold number turbulence, and its application to the problem of concentration variance. J. Fluid Mech.210, 113–153

    Google Scholar 

  • Townsend, A.A. (1956).The structure of turbulent shear flow. Cambridge Univ. Press.

  • van Ulden, A. P. (1978).Simple estimates for vertical diffusion from sources near the ground. Atmos. Environ.12, 2125–2129.

    Google Scholar 

  • Venkatram A. (1983).On dispersion in the convective boundary layer, Atmos. Environ.,17, 529–533.

    Google Scholar 

  • Warhaft, Z. (1984)The interference of thermal fields for line sources in grid turbulence J. Fluid. Mech.144 363–381.

    Google Scholar 

  • Willis G. E. Deardorff J. W. (1976),A laboratory study of diffusion into the convective planetary boundary layer, Q. J. R. Met. Soc.,102, 427–445.

    Google Scholar 

  • Willis G. E. Deardorff J. W. (1978),A laboratory study of dispersion from an elevated source within a modeled convective planetary boundary layer. Atmos. Environ.,12, 1305–1311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, H., Dinar, N. A three-dimensional model for calculating the concentration distribution in inhomogeneous turbulence. Boundary-Layer Meteorol 62, 217–245 (1993). https://doi.org/10.1007/BF00705556

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705556

Keywords

Navigation