Skip to main content
Log in

Recent developments in the Lagrangian stochastic theory of turbulent dispersion

  • Part II: Analysis of Concentration Fluctuations
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this paper some fundamental aspects of the Lagrangian stochastic theory of turbulent dispersion are discussed. Because of their similar mathematical form, the one- and two-particle theories are treated in parallel. Particular issues identified and discussed include the lack of uniqueness and universality, the role of Reynolds number and intermittency, the importance of two-particle acceleration correlations in relative dispersion and the imposition of consistency constraints between one- and two-particle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, M. S. and Pope, S. B. (1983). ‘Diffusion behind a Line Source in Grid Turbulence’, in L.J.S. Bradbury, F. Durst, B.E. Launder, F.W. Schmidt and J.H. Whitelaw (eds),Turbulent Shear Flows 4, Springer, pp. 46–52.

  • Batchelor, G. K. (1950). ‘The Application of the Similarity Theory of Turbulence to Atmospheric Diffusion’,Quart. J. Roy. Meteor. Soc. 76, 133–146.

    Google Scholar 

  • Batchelor, G. K. (1953)The Theory of Homogeneous Turbulence, CUP, Cambridge.

    Google Scholar 

  • Borgas, M. S. (1991). ‘The Multifractal Lagrangian Nature of Turbulence’.Proc. Roy. Soc. London A (Submitted).

  • Borgas, M. S. and Sawford, B. L. (1991a). ‘The small-Scale Structure of Acceleration Correlations and its Role in the Statistical Theory of Turbulent Dispersion’,J. Fluid Mech. 228, 295–320.

    Google Scholar 

  • Borgas, M. S. and Sawford, B. L. (1991b). ‘Stochastic Models for Two-Particle Dispersion in Isotropic, Homogeneous and Stationary Turbulence’, (In preparation).

  • Borgas, M. S. and Sawford, B. L. (1991c). ‘Stochastic Equations with Multifractal Random Increments for Modelling Turbulent Dispersion’,Phys. Fluids (To be submitted)

  • Durbin, P. A. (1983) ‘Stochastic Differential Equations and Turbulent Dispersion’, NASA Reference Publication 1103, NASA Lewis Research Center, Cleveland, Ohio.

    Google Scholar 

  • Frisch, U. and Parisi, G. (1985). ‘On the singularity Structure of Fully developed Turbulence’, in M. Ghil, R. Benzi and G. Parisi (eds),Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, Amsterdam, pp. 84–88.

    Google Scholar 

  • Gardiner, C. W. (1983),Handbook of Stochastic Processes for Physics, Chemistry and the Natural Sciences, Springer-Verlag, Berlin.

    Google Scholar 

  • Gifford, F. A. (1982). ‘Horizontal Diffusion in the Atmosphere: A Lagrangian-Dynamical Theory’Atmos. Environ. 16, 505–512.

    Google Scholar 

  • Gifford, F. A. (1983). Discussion of ‘Horizontal Diffusion in the Atmosphere: A Lagrangian-Dynamical Theory’,Atmos. Environ 17, 196–197.

    Google Scholar 

  • Lin, C. C. and Reid, W. H. (1963). ‘Turbulent Flow, Theoretical Aspects’, in S. Flügge (ed), Encyclopedia of Physics, Springer-Verlag, Berlin,VIII/2, 438–523.

    Google Scholar 

  • Mandelbrot, B. (1976). ‘Intermittent Turbulence and Fractal Dimension: Kurtosis and the Spectral Exponent 5/3+B’ in R. Teman (ed),Turbulence and Navier Stokes Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp. 121–145.

    Google Scholar 

  • Meneveau C. and Sreenivasan, K. R. (1987). ‘Simple Multifractal Cascade Model for Fully Developed Turbulence’,Phys. Rev. Lett. 59, 1424–1427.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M. (1975). ‘Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT Press, Cambridge MA.

    Google Scholar 

  • Novikov, E. A. (1963). ‘Random Force Method in Turbulence Theory’,Sov. Phys. JETP17, 1449–1454.

    Google Scholar 

  • Novikov, E. A. (1989). ‘Two-Particle Description of Turbulence, Markov Property, and Intermittency’Phys. Fluids A 1, 326–330.

    Google Scholar 

  • Novikov, E. A. (1990). ‘The effects of Intermittency on Statistical Characteristics of Turbulence and Scale Similarity of Breakdown Coefficients’.Phys. Fluids A 2, 814–820.

    Google Scholar 

  • Pope, S. B. and Chen, Y. L. (1989). ‘The Velocity-Dissipation Probability Density Function Model for Turbulent Flows’.Phys. Fluids A 2, 1437–1449.

    Google Scholar 

  • Sawford, B. L. (1984). ‘The Basis for, and some limitations of, the Langevin Equation in Atmospheric Relative Dispersion Modelling’,Atmos. Environ. 18, 2405–2411.

    Google Scholar 

  • Sawford, B. L. (1985). ‘Lagrangian Statistical Simulation of Concentration Mean and fluctuating Fields’.J. Climate Appl. Meteor. 24, 1152–1166.

    Google Scholar 

  • Sawford, B. L. and Guest, F. M. (1988). ‘Uniqueness and University in Lagrangian Stochastic Models of Turbulent Diffusion’, 8th symposium on Turbulence and Diffusion, Am. Meteor. Soc., Boston, MA, pp. 96–99.

  • Sawford, B. L. (1991). ‘Reynolds Number Effects in Lagrangian Stochastic Models of Turbulent Dispersion’,Phys. Fluids A 3, 1577–1586.

    Google Scholar 

  • Thomson, D. J. (1986) ‘On the relative Disperson of Two Particles in Homogeneous Stationary Turbulence and the Implications for the Size of Concentration Flutuations at Large Times’.Quart. J. Roy. Meteor. Soc. 112, 890–894.

    Google Scholar 

  • Thomson, D. J. (1987). ‘Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows’.J. Fluid Mech. 180, 529–556.

    Google Scholar 

  • Thomson, D. J. (1990). ‘A stochastic Model for the Motion of Particle Pairs in Isotropic High-Reynolds Number Turbulence, and its Application to the Problem of Concentration Variance’,J. Fluid Mech. 210, 113–153.

    Google Scholar 

  • Yeung, P. K. and Pope, S. B. (1989). ‘Lagrangian Statistics from Direct Numerical simulations of Isotropic Turbulence’,J. Fluid Mech. 207, 531–586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawford, B.L. Recent developments in the Lagrangian stochastic theory of turbulent dispersion. Boundary-Layer Meteorol 62, 197–215 (1993). https://doi.org/10.1007/BF00705555

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705555

Keywords

Navigation