Skip to main content
Log in

One-dimensional theory of the wave boundary layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Results obtained in a 2-D modeling of the statistical structure of the wave boundary layer (WBL) are used for elaboration of the general approach to 1-D modeling taking into account the spectral properties of wave drag for an arbitrary wave field. In the case of the wave field described by the JONSWAP spectrum, the momentum and energy spectral density exchange, vertical profiles of the wave-induced momentum flux and dependence of total roughness parameter and drag coefficient on peak frequency are given. The reasons that the total roughness parameter increases with decreasing fetch are explained. The role of wind waves as an active element of the ocean-atmosphere dynamic system is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benilov, A., Gumbatov, A., Zaslavsky, M., and Kitaigorodskii, S. A.: 1978, ‘Non-Steady Model of Development of Turbulent Boundary Layer Above Sea Under Generating of Surface Waves’,Izv. Acad. Sci. of the USSR Atmos. Ocean Phys. 14, 1177.

    Google Scholar 

  • Burgers, G. and Makin V.: 1991, ‘Boundary Layer Model Results for Wind-Sea Growth’,J. Phys. Oceanogr. (in press).

  • Chalikov, D.: 1976, ‘A Mathematical Model of Wind-Induced Waves’,Dokl. Akad. Nauk SSSR 229, 1083.

    Google Scholar 

  • Chalikov, D.: 1978, ‘The Numerical Simulation of Wind-Wave Interaction’,J. Fluid Mech. 87, 561–582.

    Google Scholar 

  • Chalikov, D.: 1980,Mathematical Modelling of Wind-Induced Waves. News and Problem of Science, Gidrometeoizdat, Leningrad, p. 48.

    Google Scholar 

  • Chalikov, D.: 1986, ‘Numerical Simulation of the Boundary Layer Above Waves’,Boundary-Layer Meteorol. 34, 63–98.

    Google Scholar 

  • Chalikov, D.: 1992, ‘Comments on “Wave Induced Stress and the Drag of Air Flow over Sea Waves” and “Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting”’, (accepted inJourn. Phys. Oceanogr).

  • Chalikov, D. and Makin, V.: 1990, ‘Pressure Distribution Above Waves’, EGS, XV General Assembly Copenhagen, 23–27 April 1990,Ann. Geophysicae, spec. iss., 198.

  • Chalikov, D. and Makin, V.: 1991, ‘Models of the Wave Boundary Layer’,Boundary-Layer Meteorol. 56, 83–99.

    Google Scholar 

  • Charnock, H.: 1955, ‘Wind Stress on a Water Surface’,Quart. J. Roy. Meteorol. Soc. 81, 639.

    Google Scholar 

  • Donelan, M. A.: 1982, ‘The Dependence of the Aerodynamic Drag Coefficient on Wave Parameters’, inProc. First Int. Conf. on Meteor. and Air-Sea Interaction of the Coastal Zone, The Hague, Amer. Meteorol. Soc., p. 381.

  • Garratt, J. R.: 1977, ‘Review of Drag Coefficient Over Oceans and Continent’,Mon. Wea. Rev. 105, 915.

    Google Scholar 

  • Hasselmann, K., 1962, ‘On the Non-Linear Energy Transfer in a Gravity-Wave Spectrum. 1. General Theory’,J. Flud Mech. 12, 481.

    Google Scholar 

  • Hasselmann, K.: 1963, ‘On the Non-Linear Energy Transfer in a Gravity-Wave Spectrum. 2. Conservation Theorems, Wave-Particle Correspondence, Irreversibility’,J. Fluid Mech. 15, 273.

    Google Scholar 

  • Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W. and Walden, H.: 1973, ‘Measurements of Wind-Wave Growth and Swell Decay During the Joint Sea Wave Project (JONSWAP),Dtsch. Hydr. Z. A8(12), 1.

    Google Scholar 

  • Hasselmann, D. E., Dunckel, M. and Ewing, J. A.: 1980, ‘Directional Wave Spectra Observed During JONSWAP 1973’,J. Phys. Oceanogr. 10, 1264.

    Google Scholar 

  • Hasselmann, S. and Hasselmann, K.: 1985, ‘Computations and Parameterization of the Non-Linear Energy Transfer in a Gravity-Wave Spectrum', Part 1: A New Method for Efficient Computations of the Exact Non-Linear Transfer Integral’,J. Phys. Oceanogr. 15, 1369.

    Google Scholar 

  • Hsiao, S. V. and Shemdin, O. H.: 1983, ‘Measurements of Wind Velocity and Pressure with a Wave Follower During MARSEN’,J. Geophys. Res. 88(C14), 9841.

    Google Scholar 

  • Janssen, P. A. E. M.: 1989, ‘Wind-Induced Stress and the Drag of Air Flow Over Sea Waves’,J. Phys. oceanogr. 19, 745.

    Google Scholar 

  • Janssen, P. A. E. M.: 1991, ‘Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting’,J. Phys Oceanogr. 21, 1631–1642.

    Google Scholar 

  • Komen, G. J., Hasselmann, S. and Hasselmann, K.: 1984, ‘On the Existence of a Fully Developed Wind-Sea Spectrum’,J. Phys. Oceanogr. 14, 1271.

    Google Scholar 

  • Makin, V.: 1987, ‘Numerical Results on the Structure of the Sea Wave-Induced Pressure Field in Atmosphere’,Morsoy Gidrofizicheskiy Zhurnal No. 2, 50.

    Google Scholar 

  • Makin, V.: 1989, ‘The Dynamics and Structure of the Boundary Layer Above Sea’, Senior doctorate thesis. Inst. of Oceanology, Acad. of Sci. of the USSR, Moscow, p. 417 (in Russian).

    Google Scholar 

  • Makin, V. and Chalikov, D.: 1986, ‘The Spectral Structure of Boundary Layer Above Sea Waves’,Sov. Phys. Doklady 287, No. 3.

    Google Scholar 

  • Makin, V. and Chalikov, D.: 1986, ‘Calculating Momentum and Energy Fluxes Going to Developing Waves’,Izv. Atmos. Ocean. Phys. 22, 1015–1019.

    Google Scholar 

  • Panchenko E. and Chalikov, D.: 1984, ‘Energy Structure of the Surface Layer Above the Sea Waves’,Izv. Atmos. Ocean. Phys. No. 2, 732–737.

    Google Scholar 

  • Plant W. J.: 1982, ‘A Relationship Between Wind Stress and Wave Slope’,J. Geophys. Res. 87(C3), 1961–1967.

    Google Scholar 

  • Smith, S. D. and Banke, E. G.: 1975, ‘Variation of the Sea Surface Drag Coefficient with Wind Speed’,Quart. J. Roy. Meteorol. Soc. 101, 665.

    Google Scholar 

  • Snyder, R. L., Dobson, F. W., Elliot, J. A. and Long, R. B.: 1981, ‘Array Measurements of Atmospheric Pressure Fluctuations Above Gravity Waves’,J. Fluid Mech. 102, 1.

    Google Scholar 

  • Toba, Y., Iida, N., Kawamura, H., Ebuchi, N., and Jones, I. S. F.: 1990, ‘Wave Dependence of Sea-Surface Wind Stress’,J. Phys. Oceanogr. 20, 705.

    Google Scholar 

  • Van Duin, C. A. and Janssen, P. A. E. M.: 1992, ‘An Analytic Model of the Generation of Surface Gravity Waves by Turbulent Air Flow’,J. Fluid Mech. 236, 197–215.

    Google Scholar 

  • WAMDI Group (Hasselmann, S., Hasselmann, K., Banner, E., Janssen, P. A. E. M., Komen, G. J., Bertotti, L., Lionello, P., Guillaume, A., Cardone, V. J., Greenwood, J. A., Reistad, M., Zambresky, L. and Ewing, J. A.): 1988, ‘The WAM Model — A Third Generation Ocean Wave Prediction Model’,J. Phys. Oceanogr. 18, 1775.

    Google Scholar 

  • Wu, J.: 1980, ‘Wind-Stress Coefficient Over Sea Surface Near Neutral Conditions — a Revisit’,J. Phys. Oceanogr. 10, 727.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalikov, D.V., Belevich, M.Y. One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorol 63, 65–96 (1993). https://doi.org/10.1007/BF00705377

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00705377

Keywords

Navigation